Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 267

1.

Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements.

Villiger M, Estévez N, Hepp-Reymond MC, Kiper D, Kollias SS, Eng K, Hotz-Boendermaker S.

PLoS One. 2013 Aug 28;8(8):e72403. doi: 10.1371/journal.pone.0072403.

2.

Action observation and motor imagery in performance of complex movements: evidence from EEG and kinematics analysis.

Gonzalez-Rosa JJ, Natali F, Tettamanti A, Cursi M, Velikova S, Comi G, Gatti R, Leocani L.

Behav Brain Res. 2015 Mar 15;281:290-300. doi: 10.1016/j.bbr.2014.12.016.

PMID:
25532912
3.

Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery.

Sauvage C, Jissendi P, Seignan S, Manto M, Habas C.

J Neuroradiol. 2013 Oct;40(4):267-80. doi: 10.1016/j.neurad.2012.10.001.

4.

Enhancement of motor imagery-related cortical activation during first-person observation measured by functional near-infrared spectroscopy.

Kobashi N, Holper L, Scholkmann F, Kiper D, Eng K.

Eur J Neurosci. 2012 May;35(9):1513-21. doi: 10.1111/j.1460-9568.2012.08062.x.

PMID:
22509955
5.

Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized.

Macuga KL, Frey SH.

Neuroimage. 2012 Feb 1;59(3):2798-807. doi: 10.1016/j.neuroimage.2011.09.083.

6.

Neural substrates for observing and imagining non-object-directed actions.

Lui F, Buccino G, Duzzi D, Benuzzi F, Crisi G, Baraldi P, Nichelli P, Porro CA, Rizzolatti G.

Soc Neurosci. 2008;3(3-4):261-75. doi: 10.1080/17470910701458551.

PMID:
18979380
7.

Disentangling motor execution from motor imagery with the phantom limb.

Raffin E, Mattout J, Reilly KT, Giraux P.

Brain. 2012 Feb;135(Pt 2):582-95. doi: 10.1093/brain/awr337.

8.

How equivalent are the action execution, imagery, and observation of intransitive movements? Revisiting the concept of somatotopy during action simulation.

Lorey B, Naumann T, Pilgramm S, Petermann C, Bischoff M, Zentgraf K, Stark R, Vaitl D, Munzert J.

Brain Cogn. 2013 Feb;81(1):139-50. doi: 10.1016/j.bandc.2012.09.011.

PMID:
23207575
10.

Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS).

Holper L, Muehlemann T, Scholkmann F, Eng K, Kiper D, Wolf M.

J Neuroeng Rehabil. 2010 Dec 2;7:57. doi: 10.1186/1743-0003-7-57. Erratum in: J Neuroeng Rehabil. 2013;10:16.

11.

Brain activity during observation and motor imagery of different balance tasks: an fMRI study.

Taube W, Mouthon M, Leukel C, Hoogewoud HM, Annoni JM, Keller M.

Cortex. 2015 Mar;64:102-14. doi: 10.1016/j.cortex.2014.09.022.

12.

The influence of individual motor imagery ability on cerebral recruitment during gait imagery.

van der Meulen M, Allali G, Rieger SW, Assal F, Vuilleumier P.

Hum Brain Mapp. 2014 Feb;35(2):455-70. doi: 10.1002/hbm.22192.

PMID:
23015531
13.

The selection of intended actions and the observation of others' actions: a time-resolved fMRI study.

Cunnington R, Windischberger C, Robinson S, Moser E.

Neuroimage. 2006 Feb 15;29(4):1294-302.

PMID:
16246592
14.

Functional properties of brain areas associated with motor execution and imagery.

Hanakawa T, Immisch I, Toma K, Dimyan MA, Van Gelderen P, Hallett M.

J Neurophysiol. 2003 Feb;89(2):989-1002.

15.

Parallel alterations of functional connectivity during execution and imagination after motor imagery learning.

Zhang H, Xu L, Zhang R, Hui M, Long Z, Zhao X, Yao L.

PLoS One. 2012;7(5):e36052. doi: 10.1371/journal.pone.0036052.

16.

Equivalent is not equal: primary motor cortex (MI) activation during motor imagery and execution of sequential movements.

Carrillo-de-la-Peña MT, Galdo-Alvarez S, Lastra-Barreira C.

Brain Res. 2008 Aug 21;1226:134-43. doi: 10.1016/j.brainres.2008.05.089.

PMID:
18590711
17.

A virtual reality-based system integrated with fmri to study neural mechanisms of action observation-execution: a proof of concept study.

Adamovich SV, August K, Merians A, Tunik E.

Restor Neurol Neurosci. 2009;27(3):209-23. doi: 10.3233/RNN-2009-0471.

PMID:
19531876
18.

Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study.

Kuhtz-Buschbeck JP, Mahnkopf C, Holzknecht C, Siebner H, Ulmer S, Jansen O.

Eur J Neurosci. 2003 Dec;18(12):3375-87.

PMID:
14686911
19.

Reorganization and enhanced functional connectivity of motor areas in repetitive ankle movements after training in locomotor attention.

Sacco K, Cauda F, D'Agata F, Mate D, Duca S, Geminiani G.

Brain Res. 2009 Nov 10;1297:124-34. doi: 10.1016/j.brainres.2009.08.049. Erratum in: Brain Res. 2011 Jan 25;1370:254. Katiuscia, Sacco [corrected to Sacco, Katiuscia]; Franco, Cauda [corrected to Cauda, Franco]; Federico, D'Agata [corrected to D'Agata, Federico]; Davide, Mate [corrected to Mate, Davide]; Sergio, Duca [corrected to Duca, Sergio]; Giuliano, Geminiani [corrected to Geminiani, Giuliano].

PMID:
19703428
20.

Bilateral parietal cortex function during motor imagery.

Fleming MK, Stinear CM, Byblow WD.

Exp Brain Res. 2010 Mar;201(3):499-508. doi: 10.1007/s00221-009-2062-4.

PMID:
19894039
Items per page

Supplemental Content

Support Center