Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 142

1.

Wrinkled-graphene enriched MoO3 nanobelts with increased conductivity and reduced stress for enhanced electrochemical performance.

Dong Y, Li S, Xu H, Yan M, Xu X, Tian X, Liu Q, Mai L.

Phys Chem Chem Phys. 2013 Oct 28;15(40):17165-70. doi: 10.1039/c3cp53267d.

PMID:
24013817
2.

Mesoporous TiO2 Nanocrystals/Graphene as an Efficient Sulfur Host Material for High-Performance Lithium-Sulfur Batteries.

Li Y, Cai Q, Wang L, Li Q, Peng X, Gao B, Huo K, Chu PK.

ACS Appl Mater Interfaces. 2016 Sep 14;8(36):23784-92. doi: 10.1021/acsami.6b09479. Epub 2016 Aug 31.

PMID:
27552961
3.

Mesoporous Hybrids of Reduced Graphene Oxide and Vanadium Pentoxide for Enhanced Performance in Lithium-Ion Batteries and Electrochemical Capacitors.

Pandey GP, Liu T, Brown E, Yang Y, Li Y, Sun XS, Fang Y, Li J.

ACS Appl Mater Interfaces. 2016 Apr 13;8(14):9200-10. doi: 10.1021/acsami.6b02372. Epub 2016 Apr 1.

PMID:
27010675
4.

Ultrahigh Capacity Due to Multi-Electron Conversion Reaction in Reduced Graphene Oxide-Wrapped MoO2 Porous Nanobelts.

Tang W, Peng CX, Nai CT, Su J, Liu YP, Reddy MV, Lin M, Loh KP.

Small. 2015 May;11(20):2446-53. doi: 10.1002/smll.201403018. Epub 2015 Jan 23.

PMID:
25620728
5.

Free standing reduced graphene oxide film cathodes for lithium ion batteries.

Ha SH, Jeong YS, Lee YJ.

ACS Appl Mater Interfaces. 2013 Dec 11;5(23):12295-303. doi: 10.1021/am4044147. Epub 2013 Nov 25.

PMID:
24229056
6.

A Safe High-Performance All-Solid-State Lithium-Vanadium Battery with a Freestanding V2O5 Nanowire Composite Paper Cathode.

Zhang Y, Lai J, Gong Y, Hu Y, Liu J, Sun C, Wang ZL.

ACS Appl Mater Interfaces. 2016 Dec 21;8(50):34309-34316. doi: 10.1021/acsami.6b10358. Epub 2016 Dec 8.

PMID:
27998115
7.

Facile and rapid synthesis of RGO-In2S3 composites with enhanced cyclability and high capacity for lithium storage.

Ye F, Du G, Jiang Z, Zhong Y, Wang X, Cao Q, Jiang JZ.

Nanoscale. 2012 Dec 7;4(23):7354-7. doi: 10.1039/c2nr32174b.

PMID:
23093135
8.

Vapor-transportation preparation and reversible lithium intercalation/deintercalation of alpha-MoO3 microrods.

Li W, Cheng F, Tao Z, Chen J.

J Phys Chem B. 2006 Jan 12;110(1):119-24.

PMID:
16471508
9.

Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery.

Wang C, Wang X, Yang Y, Kushima A, Chen J, Huang Y, Li J.

Nano Lett. 2015 Mar 11;15(3):1796-802. doi: 10.1021/acs.nanolett.5b00112. Epub 2015 Feb 5.

PMID:
25633221
10.

Reduced Graphene Oxide-Wrapped Nickel-Rich Cathode Materials for Lithium Ion Batteries.

Shim JH, Kim YM, Park M, Kim J, Lee S.

ACS Appl Mater Interfaces. 2017 Jun 7;9(22):18720-18729. doi: 10.1021/acsami.7b02654. Epub 2017 May 25.

PMID:
28516759
11.

Sphere-shaped hierarchical cathode with enhanced growth of nanocrystal planes for high-rate and cycling-stable li-ion batteries.

Zhang L, Li N, Wu B, Xu H, Wang L, Yang XQ, Wu F.

Nano Lett. 2015 Jan 14;15(1):656-61. doi: 10.1021/nl5041594. Epub 2014 Dec 17.

PMID:
25513887
12.

Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability.

Zhu J, Zhu T, Zhou X, Zhang Y, Lou XW, Chen X, Zhang H, Hng HH, Yan Q.

Nanoscale. 2011 Mar;3(3):1084-9. doi: 10.1039/c0nr00744g. Epub 2010 Dec 22.

PMID:
21180729
13.

Synthesis of Na(1.25)V(3)O(8) nanobelts with excellent long-term stability for rechargeable lithium-ion batteries.

Liang S, Chen T, Pan A, Liu D, Zhu Q, Cao G.

ACS Appl Mater Interfaces. 2013 Nov 27;5(22):11913-7. doi: 10.1021/am403635s. Epub 2013 Nov 5.

PMID:
24147642
14.

Reduced graphene oxide modified Li2FeSiO4/C composite with enhanced electrochemical performance as cathode material for lithium ion batteries.

Zhang LL, Duan S, Yang XL, Peng G, Liang G, Huang YH, Jiang Y, Ni SB, Li M.

ACS Appl Mater Interfaces. 2013 Dec 11;5(23):12304-9. doi: 10.1021/am402434n. Epub 2013 Nov 19.

PMID:
24195648
15.

Carbon black anchored vanadium oxide nanobelts and their post-sintering counterpart (V2O5 nanobelts) as high performance cathode materials for lithium ion batteries.

Zhou X, Wu G, Wu J, Yang H, Wang J, Gao G.

Phys Chem Chem Phys. 2014 Mar 7;16(9):3973-82. doi: 10.1039/c3cp54428a.

PMID:
24445581
16.

Ultrathin Na1.1V3O7.9 nanobelts with superior performance as cathode materials for lithium-ion batteries.

Liang S, Zhou J, Fang G, Liu J, Tang Y, Li X, Pan A.

ACS Appl Mater Interfaces. 2013 Sep 11;5(17):8704-9. doi: 10.1021/am402352q. Epub 2013 Aug 28.

PMID:
23947682
17.

A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries.

Zeng G, Shi N, Hess M, Chen X, Cheng W, Fan T, Niederberger M.

ACS Nano. 2015 Apr 28;9(4):4227-35. doi: 10.1021/acsnano.5b00576. Epub 2015 Mar 23.

PMID:
25783818
18.

SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries.

Xie X, Su D, Chen S, Zhang J, Dou S, Wang G.

Chem Asian J. 2014 Jun;9(6):1611-7. doi: 10.1002/asia.201400018. Epub 2014 Apr 11.

PMID:
24729583
19.

A novel polytype - the stacking fault based γ-MoO3 nanobelts.

Sławiński WA, Fjellvåg ØS, Ruud A, Fjellvåg H.

Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016 Apr;72(Pt 2):201-8. doi: 10.1107/S2052520615024804. Epub 2016 Mar 1.

PMID:
27048722
20.

Advanced Li-Ion Hybrid Supercapacitors Based on 3D Graphene-Foam Composites.

Liu W, Li J, Feng K, Sy A, Liu Y, Lim L, Lui G, Tjandra R, Rasenthiram L, Chiu G, Yu A.

ACS Appl Mater Interfaces. 2016 Oct 5;8(39):25941-25953. Epub 2016 Sep 23.

PMID:
27627198

Supplemental Content

Support Center