Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons.

Yang H, Tang Y, Gong J, Liu Y, Wang X, Zhao Y, Yang P, Wang S.

J Mol Model. 2013 Nov;19(11):4781-8. doi: 10.1007/s00894-013-1937-2. Epub 2013 Sep 7.

PMID:
24013440
2.

Thermal conductivity and heat transport properties of nitrogen-doped graphene.

Goharshadi EK, Mahdizadeh SJ.

J Mol Graph Model. 2015 Nov;62:74-80. doi: 10.1016/j.jmgm.2015.09.008. Epub 2015 Sep 11.

PMID:
26386455
3.

Size and edge roughness dependence of thermal conductivity for vacancy-defective graphene ribbons.

Xie G, Shen Y.

Phys Chem Chem Phys. 2015 Apr 14;17(14):8822-7. doi: 10.1039/c5cp00335k. Epub 2015 Mar 6.

PMID:
25743638
4.

Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.

Hu J, Ruan X, Chen YP.

Nano Lett. 2009 Jul;9(7):2730-5. doi: 10.1021/nl901231s.

PMID:
19499898
5.

Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons.

Li Y, Zhou Z, Shen P, Chen Z.

ACS Nano. 2009 Jul 28;3(7):1952-8. doi: 10.1021/nn9003428. Epub 2009 Jun 25.

PMID:
19555066
6.

Comparing the effects of dispersed Stone-Thrower-Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons.

Yeo JJ, Liu Z, Ng TY.

Nanotechnology. 2012 Sep 28;23(38):385702. doi: 10.1088/0957-4484/23/38/385702. Epub 2012 Sep 4.

PMID:
22947664
7.

Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.

Wei N, Xu L, Wang HQ, Zheng JC.

Nanotechnology. 2011 Mar 11;22(10):105705. doi: 10.1088/0957-4484/22/10/105705. Epub 2011 Feb 2.

PMID:
21289391
8.

Effect of tensile strain on thermal conductivity in monolayer graphene nanoribbons: a molecular dynamics study.

Zhang J, He X, Yang L, Wu G, Sha J, Hou C, Yin C, Pan A, Li Z, Liu Y.

Sensors (Basel). 2013 Jul 22;13(7):9388-95. doi: 10.3390/s130709388.

9.

Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation.

Zhang C, Hao XL, Wang CX, Wei N, Rabczuk T.

Sci Rep. 2017 Jan 25;7:41398. doi: 10.1038/srep41398.

10.

Effects of the nitrogen doping configuration and site on the thermal conductivity of defective armchair graphene nanoribbons.

Senturk AE, Oktem AS, Konukman AES.

J Mol Model. 2017 Aug;23(8):247. doi: 10.1007/s00894-017-3415-8. Epub 2017 Aug 1.

PMID:
28766111
11.

Effects of edge magnetism on the Kohn anomalies of zigzag graphene nanoribbons.

Culchac FJ, Capaz RB.

Nanotechnology. 2016 Feb 12;27(6):065707. doi: 10.1088/0957-4484/27/6/065707. Epub 2016 Jan 14.

PMID:
26762781
12.

Tuning spin polarization and spin transport of zigzag graphene nanoribbons by line defects.

Tang GP, Zhang ZH, Deng XQ, Fan ZQ, Zhu HL.

Phys Chem Chem Phys. 2015 Jan 7;17(1):638-43. doi: 10.1039/c4cp03837a.

PMID:
25407715
13.

Control of thermal and electronic transport in defect-engineered graphene nanoribbons.

Haskins J, Kınacı A, Sevik C, Sevinçli H, Cuniberti G, Cağın T.

ACS Nano. 2011 May 24;5(5):3779-87. doi: 10.1021/nn200114p. Epub 2011 Apr 19.

PMID:
21452884
14.

Effect of Stone-Wales defects on the thermal conductivity of graphene.

Krasavin SE, Osipov VA.

J Phys Condens Matter. 2015 Oct 28;27(42):425302. doi: 10.1088/0953-8984/27/42/425302. Epub 2015 Oct 5.

PMID:
26436425
15.

Phononic Fano resonances in graphene nanoribbons with local defects.

Savin AV, Kivshar YS.

Sci Rep. 2017 Jul 5;7(1):4668. doi: 10.1038/s41598-017-04987-w.

16.

Thermal transport by phonons in zigzag graphene nanoribbons with structural defects.

Xie ZX, Chen KQ, Duan W.

J Phys Condens Matter. 2011 Aug 10;23(31):315302. doi: 10.1088/0953-8984/23/31/315302. Epub 2011 Jul 19.

PMID:
21772066
17.

Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.

Liu Y, Hu C, Huang J, Sumpter BG, Qiao R.

J Chem Phys. 2015 Jun 28;142(24):244703. doi: 10.1063/1.4922775.

PMID:
26133445
18.

Electronic structure and transport properties of N2(AA)-doped armchair and zigzag graphene nanoribbons.

Owens JR, Cruz-Silva E, Meunier V.

Nanotechnology. 2013 Jun 14;24(23):235701. doi: 10.1088/0957-4484/24/23/235701. Epub 2013 May 13.

PMID:
23669134
19.

First-principles study of heat transport properties of graphene nanoribbons.

Tan ZW, Wang JS, Gan CK.

Nano Lett. 2011 Jan 12;11(1):214-9. doi: 10.1021/nl103508m. Epub 2010 Dec 15.

PMID:
21158401
20.

Thermal transport in bent graphene nanoribbons.

Zhang J, Wang X.

Nanoscale. 2013 Jan 21;5(2):734-43. doi: 10.1039/c2nr31966g. Epub 2012 Dec 10.

PMID:
23224108

Supplemental Content

Support Center