Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 80

1.

The formation mechanism of binary semiconductor nanomaterials: shared by single-source and dual-source precursor approaches.

Yu K, Liu X, Zeng Q, Yang M, Ouyang J, Wang X, Tao Y.

Angew Chem Int Ed Engl. 2013 Oct 11;52(42):11034-9. doi: 10.1002/anie.201304958. Epub 2013 Sep 4.

PMID:
24006135
2.

Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.

Brutchey RL.

Acc Chem Res. 2015 Nov 17;48(11):2918-26. doi: 10.1021/acs.accounts.5b00362. Epub 2015 Nov 6.

3.

Shape-programmed nanofabrication: understanding the reactivity of dichalcogenide precursors.

Guo Y, Alvarado SR, Barclay JD, Vela J.

ACS Nano. 2013 Apr 23;7(4):3616-26. doi: 10.1021/nn400596e. Epub 2013 Apr 1.

PMID:
23517277
4.

Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis.

Liu H, Owen JS, Alivisatos AP.

J Am Chem Soc. 2007 Jan 17;129(2):305-12.

PMID:
17212409
5.

Mechanistic study of the role of primary amines in precursor conversions to semiconductor nanocrystals at low temperature.

Yu K, Liu X, Chen QY, Yang H, Yang M, Wang X, Wang X, Cao H, Whitfield DM, Hu C, Tao Y.

Angew Chem Int Ed Engl. 2014 Jul 1;53(27):6898-904. doi: 10.1002/anie.201403714. Epub 2014 May 22.

PMID:
24855040
6.

Inorganic cluster syntheses of TM2+-doped quantum dots (CdSe, CdS, CdSe/CdS): physical property dependence on dopant locale.

Archer PI, Santangelo SA, Gamelin DR.

J Am Chem Soc. 2007 Aug 8;129(31):9808-18. Epub 2007 Jul 13.

PMID:
17629274
7.

Hybrid organic-inorganic nanomaterials based on polythiophene dendronized nanoparticles.

Advincula RC.

Dalton Trans. 2006 Jun 21;(23):2778-84. Epub 2006 May 22.

PMID:
16751885
8.

From Cd-rich to se-rich--the manipulation of CdSe nanocrystal surface stoichiometry.

Jasieniak J, Mulvaney P.

J Am Chem Soc. 2007 Mar 14;129(10):2841-8. Epub 2007 Feb 20.

PMID:
17309253
9.

Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.

Kwon SG, Hyeon T.

Acc Chem Res. 2008 Dec;41(12):1696-709. doi: 10.1021/ar8000537.

PMID:
18681462
10.

Green chemistry for large-scale synthesis of semiconductor quantum dots.

Liu JH, Fan JB, Gu Z, Cui J, Xu XB, Liang ZW, Luo SL, Zhu MQ.

Langmuir. 2008 May 20;24(10):5241-4. doi: 10.1021/la8005986. Epub 2008 Apr 10.

PMID:
18399665
11.

Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots.

Beaulac R, Archer PI, Liu X, Lee S, Salley GM, Dobrowolska M, Furdyna JK, Gamelin DR.

Nano Lett. 2008 Apr;8(4):1197-201. doi: 10.1021/nl080195p. Epub 2008 Mar 11.

PMID:
18331001
12.

Heavily doped semiconductor nanocrystal quantum dots.

Mocatta D, Cohen G, Schattner J, Millo O, Rabani E, Banin U.

Science. 2011 Apr 1;332(6025):77-81. doi: 10.1126/science.1196321.

13.

Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals.

Owen JS, Chan EM, Liu H, Alivisatos AP.

J Am Chem Soc. 2010 Dec 29;132(51):18206-13. doi: 10.1021/ja106777j. Epub 2010 Dec 3.

PMID:
21128655
14.

Mechanistic insights into the role of alkylamine in the synthesis of CdSe nanocrystals.

García-Rodríguez R, Liu H.

J Am Chem Soc. 2014 Feb 5;136(5):1968-75. doi: 10.1021/ja4110182. Epub 2014 Jan 22.

PMID:
24450484
15.

Low temperature synthesis of ZnS and CdZnS shells on CdSe quantum dots.

Zhu H, Prakash A, Benoit DN, Jones CJ, Colvin VL.

Nanotechnology. 2010 Jun 25;21(25):255604. doi: 10.1088/0957-4484/21/25/255604. Epub 2010 Jun 2.

PMID:
20516578
16.

Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals.

Xie R, Li Z, Peng X.

J Am Chem Soc. 2009 Oct 28;131(42):15457-66. doi: 10.1021/ja9063102.

PMID:
19775131
17.

Ligand exchange on colloidal CdSe nanocrystals using thermally labile tert-butylthiol for improved photocurrent in nanocrystal films.

Webber DH, Brutchey RL.

J Am Chem Soc. 2012 Jan 18;134(2):1085-92. doi: 10.1021/ja208878h. Epub 2011 Dec 23.

PMID:
22142224
18.

Phosphine-initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures: old concept, new applications.

Gui J, Ji M, Liu J, Xu M, Zhang J, Zhu H.

Angew Chem Int Ed Engl. 2015 Mar 16;54(12):3683-7. doi: 10.1002/anie.201410053. Epub 2015 Feb 4.

PMID:
25655404
19.

Collision-induced dissociation of II-VI semiconductor nanocrystal precursors, Cd2+ and Zn2+ complexes with trioctylphosphine oxide, sulfide, and selenide.

Min WJ, Jung S, Lim SJ, Kim Y, Shin SK.

J Phys Chem A. 2009 Sep 3;113(35):9588-94. doi: 10.1021/jp905153v.

PMID:
19658381
20.

Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials.

Reiss P, Carrière M, Lincheneau C, Vaure L, Tamang S.

Chem Rev. 2016 Sep 28;116(18):10731-819. doi: 10.1021/acs.chemrev.6b00116. Epub 2016 Jul 8.

PMID:
27391095

Supplemental Content

Support Center