Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

Supercapacitor operating at 200 degrees celsius.

Borges RS, Reddy AL, Rodrigues MT, Gullapalli H, Balakrishnan K, Silva GG, Ajayan PM.

Sci Rep. 2013;3:2572. doi: 10.1038/srep02572.

2.

Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes.

Zheng X, Yan X, Sun Y, Yu Y, Zhang G, Shen Y, Liang Q, Liao Q, Zhang Y.

J Colloid Interface Sci. 2016 Mar 15;466:291-6. doi: 10.1016/j.jcis.2015.12.024. Epub 2015 Dec 14.

PMID:
26748061
3.

Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte.

Maiti S, Pramanik A, Chattopadhyay S, De G, Mahanty S.

J Colloid Interface Sci. 2016 Feb 15;464:73-82. doi: 10.1016/j.jcis.2015.11.010. Epub 2015 Nov 7.

PMID:
26609925
4.

Effect of temperature on the capacitance of carbon nanotube supercapacitors.

Masarapu C, Zeng HF, Hung KH, Wei B.

ACS Nano. 2009 Aug 25;3(8):2199-206. doi: 10.1021/nn900500n.

PMID:
19583250
5.

Flexible energy storage devices based on nanocomposite paper.

Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM.

Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13574-7. Epub 2007 Aug 15.

6.

Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.

Belousov VV.

Acc Chem Res. 2017 Feb 21;50(2):273-280. doi: 10.1021/acs.accounts.6b00473. Epub 2017 Feb 10.

PMID:
28186402
7.

Direct laser writing of micro-supercapacitors on hydrated graphite oxide films.

Gao W, Singh N, Song L, Liu Z, Reddy AL, Ci L, Vajtai R, Zhang Q, Wei B, Ajayan PM.

Nat Nanotechnol. 2011 Jul 31;6(8):496-500. doi: 10.1038/nnano.2011.110.

PMID:
21804554
8.

High performance of a solid-state flexible asymmetric supercapacitor based on graphene films.

Choi BG, Chang SJ, Kang HW, Park CP, Kim HJ, Hong WH, Lee S, Huh YS.

Nanoscale. 2012 Aug 21;4(16):4983-8. doi: 10.1039/c2nr30991b. Epub 2012 Jun 29.

PMID:
22751863
9.

A pyrrolidinium nitrate protic ionic liquid-based electrolyte for very low-temperature electrical double-layer capacitors.

Anouti M, Timperman L.

Phys Chem Chem Phys. 2013 May 7;15(17):6539-48. doi: 10.1039/c3cp44680h.

PMID:
23532057
10.

Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries.

Kalaga K, Rodrigues MT, Gullapalli H, Babu G, Arava LM, Ajayan PM.

ACS Appl Mater Interfaces. 2015 Nov 25;7(46):25777-83. doi: 10.1021/acsami.5b07636. Epub 2015 Nov 11.

PMID:
26535786
11.

High-temperature supercapacitor with a proton-conducting metal pyrophosphate electrolyte.

Hibino T, Kobayashi K, Nagao M, Kawasaki S.

Sci Rep. 2015 Jan 20;5:7903. doi: 10.1038/srep07903.

12.

Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.

Jin Y, Chen H, Chen M, Liu N, Li Q.

ACS Appl Mater Interfaces. 2013 Apr 24;5(8):3408-16. doi: 10.1021/am400457x. Epub 2013 Apr 5.

PMID:
23488813
13.

Dynamic and galvanic stability of stretchable supercapacitors.

Li X, Gu T, Wei B.

Nano Lett. 2012 Dec 12;12(12):6366-71. doi: 10.1021/nl303631e. Epub 2012 Nov 28.

PMID:
23167804
14.

Holey graphene nanosheets with surface functional groups as high-performance supercapacitors in ionic-liquid electrolyte.

Yang CH, Huang PL, Luo XF, Wang CH, Li C, Wu YH, Chang JK.

ChemSusChem. 2015 May 22;8(10):1779-86. doi: 10.1002/cssc.201500030. Epub 2015 Apr 20.

PMID:
25900279
15.

Atomic layer deposition encapsulated activated carbon electrodes for high voltage stable supercapacitors.

Hong K, Cho M, Kim SO.

ACS Appl Mater Interfaces. 2015 Jan 28;7(3):1899-906. doi: 10.1021/am507673j. Epub 2015 Jan 13.

PMID:
25548826
16.

Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures.

Kim SK, Kim HJ, Lee JC, Braun PV, Park HS.

ACS Nano. 2015 Aug 25;9(8):8569-77. doi: 10.1021/acsnano.5b03732. Epub 2015 Jul 28.

PMID:
26192922
17.

All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.

Kang YJ, Chung H, Han CH, Kim W.

Nanotechnology. 2012 Feb 17;23(6):065401. doi: 10.1088/0957-4484/23/6/065401. Epub 2012 Jan 17. Erratum in: Nanotechnology. 2012 Jul 20;23(28):289501.

PMID:
22248712
18.

Poly(vinyl Alcohol) Borate Gel Polymer Electrolytes Prepared by Electrodeposition and Their Application in Electrochemical Supercapacitors.

Jiang M, Zhu J, Chen C, Lu Y, Ge Y, Zhang X.

ACS Appl Mater Interfaces. 2016 Feb 10;8(5):3473-81. doi: 10.1021/acsami.5b11984. Epub 2016 Jan 29.

PMID:
26788748
19.

Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.

Karnan M, Subramani K, Sudhan N, Ilayaraja N, Sathish M.

ACS Appl Mater Interfaces. 2016 Dec 28;8(51):35191-35202. doi: 10.1021/acsami.6b10704. Epub 2016 Dec 15.

PMID:
27977134
20.

Electrochemical Performance of PbO2 and PbO2-CNT Composite Electrodes for Energy Storage Devices.

Soumya MS, Binitha G, Praveen P, Subramanian KR, Lee YS, Nair VS, Sivakumar N.

J Nanosci Nanotechnol. 2015 Jan;15(1):703-8.

PMID:
26328430

Supplemental Content

Support Center