Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 167

1.

Rad26, the transcription-coupled repair factor in yeast, is required for removal of stalled RNA polymerase-II following UV irradiation.

Ghosh-Roy S, Das D, Chowdhury D, Smerdon MJ, Chaudhuri RN.

PLoS One. 2013 Aug 21;8(8):e72090. doi: 10.1371/journal.pone.0072090. eCollection 2013. Erratum in: PLoS One. 2013;8(9):doi/10.1371/annotation/0625b456-da2e-44bd-b620-39796216cc2a. J Smerdon, Michael [corrected to Smerdon, Michael J].

3.

Tfb5 is partially dispensable for Rad26 mediated transcription coupled nucleotide excision repair in yeast.

Ding B, Ruggiero C, Chen X, Li S.

DNA Repair (Amst). 2007 Nov;6(11):1661-9. Epub 2007 Jul 20.

4.
5.

Modulation of Rad26- and Rpb9-mediated DNA repair by different promoter elements.

Li S, Chen X, Ruggiero C, Ding B, Smerdon MJ.

J Biol Chem. 2006 Dec 1;281(48):36643-51. Epub 2006 Oct 5.

6.

Diverse roles of RNA polymerase II-associated factor 1 complex in different subpathways of nucleotide excision repair.

Tatum D, Li W, Placer M, Li S.

J Biol Chem. 2011 Sep 2;286(35):30304-13. doi: 10.1074/jbc.M111.252981. Epub 2011 Jul 7.

7.

Transcription coupled nucleotide excision repair in the yeast Saccharomyces cerevisiae: The ambiguous role of Rad26.

Li S.

DNA Repair (Amst). 2015 Dec;36:43-8. doi: 10.1016/j.dnarep.2015.09.006. Epub 2015 Sep 10. Review.

PMID:
26429063
8.

Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae.

Tijsterman M, Verhage RA, van de Putte P, Tasseron-de Jong JG, Brouwer J.

Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8027-32.

9.

Double mutants of Saccharomyces cerevisiae with alterations in global genome and transcription-coupled repair.

Verhage RA, van Gool AJ, de Groot N, Hoeijmakers JH, van de Putte P, Brouwer J.

Mol Cell Biol. 1996 Feb;16(2):496-502.

10.
11.

Dissecting transcription-coupled and global genomic repair in the chromatin of yeast GAL1-10 genes.

Li S, Smerdon MJ.

J Biol Chem. 2004 Apr 2;279(14):14418-26. Epub 2004 Jan 19.

14.

The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair.

Ding B, LeJeune D, Li S.

J Biol Chem. 2010 Feb 19;285(8):5317-26. doi: 10.1074/jbc.M109.082818. Epub 2009 Dec 30.

15.

Sen1, the yeast homolog of human senataxin, plays a more direct role than Rad26 in transcription coupled DNA repair.

Li W, Selvam K, Rahman SA, Li S.

Nucleic Acids Res. 2016 Aug 19;44(14):6794-802. doi: 10.1093/nar/gkw428. Epub 2016 May 13.

16.

A single amino acid change in histone H4 enhances UV survival and DNA repair in yeast.

Nag R, Gong F, Fahy D, Smerdon MJ.

Nucleic Acids Res. 2008 Jun;36(11):3857-66. doi: 10.1093/nar/gkn311. Epub 2008 May 28. Erratum in: Nucleic Acids Res. 2012 Oct;40(19):9981.

17.

Transcription-coupled DNA repair in yeast transcription factor IIE (TFIIE) mutants.

Lommel L, Gregory SM, Becker KI, Sweder KS.

Nucleic Acids Res. 2000 Feb 1;28(3):835-42.

18.

A role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae.

Taschner M, Harreman M, Teng Y, Gill H, Anindya R, Maslen SL, Skehel JM, Waters R, Svejstrup JQ.

Mol Cell Biol. 2010 Jan;30(2):436-46. doi: 10.1128/MCB.00822-09. Epub 2009 Nov 9.

19.

A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage.

Woudstra EC, Gilbert C, Fellows J, Jansen L, Brouwer J, Erdjument-Bromage H, Tempst P, Svejstrup JQ.

Nature. 2002 Feb 21;415(6874):929-33.

PMID:
11859374
20.

Defective nucleotide excision repair in yeast hpr1 and tho2 mutants.

González-Barrera S, Prado F, Verhage R, Brouwer J, Aguilera A.

Nucleic Acids Res. 2002 May 15;30(10):2193-201.

Supplemental Content

Support Center