Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

An electromagnetic thermotherapy system with a deep penetration depth for percutaneous thermal ablation.

Huang SC, Chang YY, Kang JW, Tsai HW, Shan YS, Lin XZ, Lee GB.

Ann Biomed Eng. 2014 Jan;42(1):86-96. doi: 10.1007/s10439-013-0899-y.

PMID:
23990331
2.

Electromagnetic thermotherapy for deep organ ablation by using a needle array under a synchronized-coil system.

Huang SC, Kang JW, Tsai HW, Shan YS, Lin XZ, Lee GB.

IEEE Trans Biomed Eng. 2014 Nov;61(11):2733-9. doi: 10.1109/TBME.2014.2339499.

PMID:
25055378
3.

Electromagnetic thermotherapy system with needle arrays: a practical tool for the removal of cancerous tumors.

Huang SC, Kang JW, Tsai HW, Shan YS, Lin XZ, Lee GB.

IEEE Trans Biomed Eng. 2014 Feb;61(2):598-605.

PMID:
24158468
4.

Dual-row needle arrays under an electromagnetic thermotherapy system for bloodless liver resection surgery.

Huang SC, Chang YY, Chao YJ, Shan YS, Lin XZ, Lee GB.

IEEE Trans Biomed Eng. 2012 Mar;59(3):824-31. doi: 10.1109/TBME.2011.2180381.

PMID:
22194233
5.

Consideration of different heating lengths of needles with induction heating and resistance system: A novel design of needle module for thermal ablation.

Bui HT, Hwang SJ, Lee HH, Huang DY.

Bioelectromagnetics. 2017 Apr;38(3):220-226. doi: 10.1002/bem.22027.

PMID:
28026048
6.

Hemostasis Plug for an Electromagnetic Thermotherapy and Its Application for Liver Laceration.

Liu CH, Huang SC, Chao YJ, Lin XZ, Lee GB.

Ann Biomed Eng. 2016 Apr;44(4):1310-20. doi: 10.1007/s10439-015-1365-9.

PMID:
26139296
7.

Minimally invasive thermotherapy method for tumor treatment based on an exothermic chemical reaction.

Deng ZS, Liu J.

Minim Invasive Ther Allied Technol. 2007;16(6):341-6.

PMID:
17943608
8.

Applicator modeling for electromagnetic thermotherapy of cervix cancer.

Rezaeealam B.

Electromagn Biol Med. 2015 Mar;34(1):43-7. doi: 10.3109/15368378.2013.869753.

PMID:
24460419
9.
10.

Laser-induced thermotherapy for lung tissue--evaluation of two different internally cooled application systems for clinical use.

Ritz JP, Lehmann KS, Mols A, Frericks B, Knappe V, Buhr HJ, Holmer C.

Lasers Med Sci. 2008 Apr;23(2):195-202.

PMID:
17599236
11.

Feasibility of new heating method of hepatic parenchyma using a sintered MgFe2O4 needle under an alternating magnetic field.

Sato K, Watanabe Y, Horiuchi A, Yukumi S, Doi T, Yoshida M, Yamamoto Y, Tsunooka N, Kawachi K.

J Surg Res. 2008 May 1;146(1):110-6.

PMID:
18155250
12.
13.

Heating properties of re-entrant resonant applicator for brain tumor by electromagnetic heating modes.

Shindo Y, Kato K, Tsuchiya K, Yabuhara T, Shigihara T, Iwazaki R, Uzuka T, Takahashi H, Fujii Y.

Conf Proc IEEE Eng Med Biol Soc. 2007;2007:3609-12.

PMID:
18002778
14.

Development of a novel loosely wound helical coil for interstitial radiofrequency thermal therapy.

McCann C, Sherar MD.

Phys Med Biol. 2006 Aug 7;51(15):3835-50.

PMID:
16861784
15.
16.
17.

Ferromagnetic self-regulating reheatable thermal rod implants for in situ tissue ablation.

Rehman J, Landman J, Tucker RD, Bostwick DG, Sundaram CP, Clayman RV.

J Endourol. 2002 Sep;16(7):523-31.

PMID:
12396447
18.

Regional heating by insertion of dielectrics and rotation of the focused electric field in the hyperthermia.

Kameyama Y, Ishihara Y.

Conf Proc IEEE Eng Med Biol Soc. 2008;2008:4380-3. doi: 10.1109/IEMBS.2008.4650181.

PMID:
19163684
19.

Tumor thermal ablation therapy using alkali metals as powerful self-heating seeds.

Rao W, Liu J.

Minim Invasive Ther Allied Technol. 2008;17(1):43-9. doi: 10.1080/13645700701803826.

PMID:
18270876
20.

Thermal analysis of laser interstitial thermotherapy in ex vivo fibro-fatty tissue using exponential functions.

Salas N Jr, Manns F, Milne PJ, Denham DB, Minhaj AM, Parel JM, Robinson DS.

Phys Med Biol. 2004 May 7;49(9):1609-24.

PMID:
15152919

Supplemental Content

Support Center