Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 84

1.

Long-term biopersistence of tangled oxidized carbon nanotubes inside and outside macrophages in rat subcutaneous tissue.

Sato Y, Yokoyama A, Nodasaka Y, Kohgo T, Motomiya K, Matsumoto H, Nakazawa E, Numata T, Zhang M, Yudasaka M, Hara H, Araki R, Tsukamoto O, Saito H, Kamino T, Watari F, Tohji K.

Sci Rep. 2013;3:2516. doi: 10.1038/srep02516.

2.

High-resolution electron microscopy of multi-wall carbon nanotubes in the subcutaneous tissue of rats.

Sakaguchi N, Watari F, Yokoyama A, Nodasaka Y.

J Electron Microsc (Tokyo). 2008 Oct;57(5):159-64. doi: 10.1093/jmicro/dfn016.

PMID:
18799809
3.

Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo.

Sato Y, Yokoyama A, Shibata K, Akimoto Y, Ogino S, Nodasaka Y, Kohgo T, Tamura K, Akasaka T, Uo M, Motomiya K, Jeyadevan B, Ishiguro M, Hatakeyama R, Watari F, Tohji K.

Mol Biosyst. 2005 Jul;1(2):176-82. Epub 2005 Apr 20.

PMID:
16880981
4.

Comparison of cytotoxicity of pristine and covalently functionalized multi-walled carbon nanotubes in RAW 264.7 macrophages.

Luo M, Deng X, Shen X, Dong L, Liu Y.

J Nanosci Nanotechnol. 2012 Jan;12(1):274-83.

PMID:
22523976
5.

Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model.

Bussy C, Hadad C, Prato M, Bianco A, Kostarelos K.

Nanoscale. 2016 Jan 7;8(1):590-601. doi: 10.1039/c5nr06625e.

PMID:
26647092
6.

In vivo detection of magnetic labeled oxidized multi-walled carbon nanotubes by magnetic resonance imaging.

Li R, Wu R, Zhao L, Qin H, Wu J, Zhang J, Bao R, Zou H.

Nanotechnology. 2014 Dec 12;25(49):495102. doi: 10.1088/0957-4484/25/49/495102. Epub 2014 Nov 20.

PMID:
25409786
7.

Cytotoxicity of carbon nanotube variants: a comparative in vitro exposure study with A549 epithelial and J774 macrophage cells.

Kumarathasan P, Breznan D, Das D, Salam MA, Siddiqui Y, MacKinnon-Roy C, Guan J, de Silva N, Simard B, Vincent R.

Nanotoxicology. 2015 Mar;9(2):148-61. doi: 10.3109/17435390.2014.902519. Epub 2014 Apr 9.

PMID:
24713075
8.

Surface modification of multiwall carbon nanotubes determines the pro-inflammatory outcome in macrophage.

Zhang T, Tang M, Kong L, Li H, Zhang T, Xue Y, Pu Y.

J Hazard Mater. 2015 Mar 2;284:73-82. doi: 10.1016/j.jhazmat.2014.11.013. Epub 2014 Nov 15.

PMID:
25463220
9.

Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos.

Boyles MS, Young L, Brown DM, MacCalman L, Cowie H, Moisala A, Smail F, Smith PJ, Proudfoot L, Windle AH, Stone V.

Toxicol In Vitro. 2015 Oct;29(7):1513-28. doi: 10.1016/j.tiv.2015.06.012. Epub 2015 Jun 15.

PMID:
26086123
10.

Specific biological responses of the synovial membrane to carbon nanotubes.

Nomura H, Takanashi S, Tanaka M, Haniu H, Aoki K, Okamoto M, Kobayashi S, Takizawa T, Usui Y, Oishi A, Kato H, Saito N.

Sci Rep. 2015 Sep 21;5:14314. doi: 10.1038/srep14314.

11.

In vivo comet assay of multi-walled carbon nanotubes using lung cells of rats intratracheally instilled.

Ema M, Masumori S, Kobayashi N, Naya M, Endoh S, Maru J, Hosoi M, Uno F, Nakajima M, Hayashi M, Nakanishi J.

J Appl Toxicol. 2013 Oct;33(10):1053-60. doi: 10.1002/jat.2810. Epub 2012 Aug 31.

PMID:
22936419
12.

Multi-walled carbon nanotubes injure the plasma membrane of macrophages.

Hirano S, Kanno S, Furuyama A.

Toxicol Appl Pharmacol. 2008 Oct 15;232(2):244-51. doi: 10.1016/j.taap.2008.06.016. Epub 2008 Jul 3.

PMID:
18655803
13.

Inflammatory and hyperalgesic effects of oxidized multi-walled carbon nanotubes in rats.

Pinto NV, de Andrade NF, Martinez DS, Alves OL, Souza Filho AG, Mota MR, Nascimento KS, Cavada BS, Assreuy AM.

J Nanosci Nanotechnol. 2013 Aug;13(8):5276-82.

PMID:
23882754
14.

Direct measurements of interactions between polypeptides and carbon nanotubes.

Li X, Chen W, Zhan Q, Dai L, Sowards L, Pender M, Naik RR.

J Phys Chem B. 2006 Jun 29;110(25):12621-5.

PMID:
16800593
15.

Carcinogenicity evaluation for the application of carbon nanotubes as biomaterials in rasH2 mice.

Takanashi S, Hara K, Aoki K, Usui Y, Shimizu M, Haniu H, Ogihara N, Ishigaki N, Nakamura K, Okamoto M, Kobayashi S, Kato H, Sano K, Nishimura N, Tsutsumi H, Machida K, Saito N.

Sci Rep. 2012;2:498. doi: 10.1038/srep00498. Epub 2012 Jul 9. Erratum in: Sci Rep. 2013 Apr 17;3:1688.

16.

Multi-walled carbon nanotubes induce apoptosis in RAW 264.7 cell-derived osteoclasts through mitochondria-mediated death pathway.

Ye S, Jiang Y, Zhang H, Wang Y, Wu Y, Hou Z, Zhang Q.

J Nanosci Nanotechnol. 2012 Mar;12(3):2101-12.

PMID:
22755027
17.

Effect of functionalization on drug delivery potential of carbon nanotubes.

Sharma S, Mehra NK, Jain K, Jain NK.

Artif Cells Nanomed Biotechnol. 2016 Dec;44(8):1851-1860. Epub 2016 Jan 6.

PMID:
26732473
18.

Toxicity analysis of various Pluronic F-68-coated carbon nanotubes on mesenchymal stem cells.

Yao MZ, Hu YL, Sheng XX, Lin J, Ling D, Gao JQ.

Chem Biol Interact. 2016 Apr 25;250:47-58. doi: 10.1016/j.cbi.2016.03.013. Epub 2016 Mar 10.

PMID:
26970603
19.

Pulmonary and pleural inflammation after intratracheal instillation of short single-walled and multi-walled carbon nanotubes.

Fujita K, Fukuda M, Endoh S, Maru J, Kato H, Nakamura A, Shinohara N, Uchino K, Honda K.

Toxicol Lett. 2016 Aug 22;257:23-37. doi: 10.1016/j.toxlet.2016.05.025. Epub 2016 May 31.

20.

Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs) influences their oxidative and pro-inflammatory potential in vitro.

Gasser M, Wick P, Clift MJ, Blank F, Diener L, Yan B, Gehr P, Krug HF, Rothen-Rutishauser B.

Part Fibre Toxicol. 2012 May 24;9:17. doi: 10.1186/1743-8977-9-17.

Supplemental Content

Support Center