Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 183

1.

Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron.

Bai H, Kang Y, Quan H, Han Y, Sun J, Feng Y.

J Environ Manage. 2013 Nov 15;129:350-6. doi: 10.1016/j.jenvman.2013.06.050. Epub 2013 Aug 26.

PMID:
23981707
2.

Enhanced bioremediation of heavy metal from effluent by sulfate-reducing bacteria with copper-iron bimetallic particles support.

Zhou Q, Chen Y, Yang M, Li W, Deng L.

Bioresour Technol. 2013 May;136:413-7. doi: 10.1016/j.biortech.2013.03.047. Epub 2013 Mar 18.

PMID:
23567710
3.

[Treating Cr(VI)-containing wastewater by a consortium of sulfate reducing bacteria and copper-iron bimetallic particles].

He QZ, Chen H, Wang D, Li H, Ding XH, Deng L.

Huan Jing Ke Xue. 2011 Jul;32(7):2000-5. Chinese.

PMID:
21922821
4.

Anaerobic treatment of landfill leachate by sulfate reduction.

Henry JG, Prasad D.

Water Sci Technol. 2000;41(3):239-46.

PMID:
11381997
5.

Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs.

Bai H, Kang Y, Quan H, Han Y, Sun J, Feng Y.

Bioresour Technol. 2013 Jan;128:818-22. doi: 10.1016/j.biortech.2012.10.070. Epub 2012 Oct 25.

PMID:
23182037
6.

Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.

Geets J, Vanbroekhoven K, Borremans B, Vangronsveld J, Diels L, van der Lelie D.

Environ Sci Pollut Res Int. 2006 Oct;13(6):362-78.

PMID:
17120826
7.

Bioaugmented sulfate reduction using enriched anaerobic microflora in the presence of zero valent iron.

Xin Y, Yong K, Duujong L, Ying F.

Chemosphere. 2008 Nov;73(9):1436-41. doi: 10.1016/j.chemosphere.2008.08.002. Epub 2008 Oct 5.

PMID:
18840389
8.

Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria.

Kieu HT, Müller E, Horn H.

Water Res. 2011 Jul;45(13):3863-70. doi: 10.1016/j.watres.2011.04.043. Epub 2011 May 11.

PMID:
21632086
9.

Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper.

Miran W, Jang J, Nawaz M, Shahzad A, Jeong SE, Jeon CO, Lee DS.

Chemosphere. 2017 Dec;189:134-142. doi: 10.1016/j.chemosphere.2017.09.048. Epub 2017 Sep 13.

PMID:
28934653
10.

Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria.

Wang A, Ren N, Wang X, Lee D.

J Hazard Mater. 2008 Jun 15;154(1-3):1060-5. Epub 2007 Nov 17.

PMID:
18093734
11.

Sulfidogenic fluidized-bed treatment of metal-containing wastewater at low and high temperatures.

Sahinkaya E, Ozkaya B, Kaksonen AH, Puhakka JA.

Biotechnol Bioeng. 2007 Apr 15;96(6):1064-72.

PMID:
17004272
12.

Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

van den Brand TP, Roest K, Chen GH, Brdjanovic D, van Loosdrecht MC.

World J Microbiol Biotechnol. 2015 Nov;31(11):1675-81. doi: 10.1007/s11274-015-1935-x. Epub 2015 Sep 11. Review.

PMID:
26362530
13.

Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria.

Guha S, Bhargava P.

Water Environ Res. 2005 Jul-Aug;77(4):411-6.

PMID:
16121509
14.

Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor.

Jong T, Parry DL.

Water Res. 2006 Jul;40(13):2561-71. Epub 2006 Jun 30.

PMID:
16814360
15.

Biological treatment of mining wastewaters by fixed-bed bioreactors at high organic loading.

Bratkova S, Koumanova B, Beschkov V.

Bioresour Technol. 2013 Jun;137:409-13. doi: 10.1016/j.biortech.2013.03.177. Epub 2013 Apr 6.

PMID:
23611703
16.

Optimization of sulfide production by an indigenous consortium of sulfate-reducing bacteria for the treatment of lead-contaminated wastewater.

Kieu TQ, Nguyen TY, Dang TY, Nguyen TB, Vuong TN, Horn H.

Bioprocess Biosyst Eng. 2015 Oct;38(10):2003-11. doi: 10.1007/s00449-015-1441-4. Epub 2015 Aug 7.

PMID:
26251206
17.

Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination.

Martins M, Faleiro ML, Barros RJ, Veríssimo AR, Barreiros MA, Costa MC.

J Hazard Mater. 2009 Jul 30;166(2-3):706-13. doi: 10.1016/j.jhazmat.2008.11.088. Epub 2008 Dec 3.

PMID:
19135795
18.
19.
20.

Quantification of toxic and inhibitory impact of copper and zinc on mixed cultures of sulfate-reducing bacteria.

Utgikar VP, Tabak HH, Haines JR, Govind R.

Biotechnol Bioeng. 2003 May 5;82(3):306-12.

PMID:
12599257

Supplemental Content

Support Center