Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Enhancing phytoextraction of Cd by combining poplar (clone "I-214") with Pseudomonas fluorescens and microbial consortia.

Cocozza C, Vitullo D, Lima G, Maiuro L, Marchetti M, Tognetti R.

Environ Sci Pollut Res Int. 2014 Feb;21(3):1796-1808. doi: 10.1007/s11356-013-2073-3. Epub 2013 Aug 25.

PMID:
23979851
2.

Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity.

Manousaki E, Kalogerakis N.

Environ Sci Pollut Res Int. 2009 Nov;16(7):844-54. doi: 10.1007/s11356-009-0224-3. Epub 2009 Jul 14.

PMID:
19597858
3.

Challenging synergistic activity of poplar-bacteria association for the Cd phytostabilization.

C C, D T, G L, G A, D V, A F, T L, V de F, G L, G R, S S, R T.

Environ Sci Pollut Res Int. 2015 Dec;22(24):19546-61. doi: 10.1007/s11356-015-5097-z. Epub 2015 Aug 14.

PMID:
26268621
4.

The effect of soil bioaugmentation with strains of Pseudomonas on Cd, Zn and Cu uptake by Sinapis alba L.

Płociniczak T, Kukla M, Wątroba R, Piotrowska-Seget Z.

Chemosphere. 2013 May;91(9):1332-7. doi: 10.1016/j.chemosphere.2013.03.008. Epub 2013 Apr 4.

PMID:
23561856
5.

Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil.

Hassan SE, Hijri M, St-Arnaud M.

N Biotechnol. 2013 Sep 25;30(6):780-7. doi: 10.1016/j.nbt.2013.07.002. Epub 2013 Jul 20.

PMID:
23876814
6.
7.

Chromium phytoextraction from tannery effluent-contaminated soil by Crotalaria juncea infested with Pseudomonas fluorescens.

Agarwal A, Singh HP, Rai JP.

Environ Sci Pollut Res Int. 2014;21(13):7938-44. Epub 2014 Mar 22.

PMID:
24659403
8.

Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils.

Hechmi N, Aissa NB, Abdenaceur H, Jedidi N.

Environ Sci Pollut Res Int. 2014 Jan;21(2):1304-13. doi: 10.1007/s11356-013-1997-y. Epub 2013 Jul 31.

PMID:
23900950
9.

The Effect of Pollination on Cd Phytoextraction From Soil by Maize (Zea mays L.).

Xu W, Lu G, Wang R, Guo C, Liao C, Yi X, Dang Z.

Int J Phytoremediation. 2015;17(10):945-50. doi: 10.1080/15226514.2014.1003789.

PMID:
25581531
10.

Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation.

Yang Y, Liang Y, Ghosh A, Song Y, Chen H, Tang M.

Environ Sci Pollut Res Int. 2015 Sep;22(17):13179-93. doi: 10.1007/s11356-015-4521-8. Epub 2015 May 2.

PMID:
25929455
11.

Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants.

Duponnois R, Kisa M, Assigbetse K, Prin Y, Thioulouse J, Issartel M, Moulin P, Lepage M.

Sci Total Environ. 2006 Nov 1;370(2-3):391-400. Epub 2006 Sep 20.

PMID:
16989893
12.

Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp. RSC-14 inoculation.

Khan AR, Ullah I, Khan AL, Park GS, Waqas M, Hong SJ, Jung BK, Kwak Y, Lee IJ, Shin JH.

Environ Sci Pollut Res Int. 2015 Sep;22(18):14032-42. doi: 10.1007/s11356-015-4647-8. Epub 2015 May 10.

PMID:
25956518
13.

Bacteria associated with yellow lupine grown on a metal-contaminated soil: in vitro screening and in vivo evaluation for their potential to enhance Cd phytoextraction.

Weyens N, Gielen M, Beckers B, Boulet J, van der Lelie D, Taghavi S, Carleer R, Vangronsveld J.

Plant Biol (Stuttg). 2014 Sep;16(5):988-96. doi: 10.1111/plb.12141. Epub 2014 Jan 8.

PMID:
24400887
14.
15.

Identification of Sesbania sesban (L.) Merr. as an Efficient and Well Adapted Phytoremediation Tool for Cd Polluted Soils.

Varun M, Ogunkunle CO, D'Souza R, Favas P, Paul M.

Bull Environ Contam Toxicol. 2017 Jun;98(6):867-873. doi: 10.1007/s00128-017-2094-6. Epub 2017 Apr 29.

PMID:
28456824
16.

The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H.

J Environ Manage. 2015 Jun 1;156:62-9. doi: 10.1016/j.jenvman.2015.03.024. Epub 2015 Mar 19.

PMID:
25796039
17.

Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria.

He LY, Chen ZJ, Ren GD, Zhang YF, Qian M, Sheng XF.

Ecotoxicol Environ Saf. 2009 Jul;72(5):1343-8. doi: 10.1016/j.ecoenv.2009.03.006. Epub 2009 Apr 14.

PMID:
19368973
18.

Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria.

Braud A, Jézéquel K, Bazot S, Lebeau T.

Chemosphere. 2009 Jan;74(2):280-6. doi: 10.1016/j.chemosphere.2008.09.013. Epub 2008 Oct 21.

PMID:
18945474
19.

Poplar response to cadmium and lead soil contamination.

Radojčić Redovniković I, De Marco A, Proietti C, Hanousek K, Sedak M, Bilandžić N, Jakovljević T.

Ecotoxicol Environ Saf. 2017 Oct;144:482-489. doi: 10.1016/j.ecoenv.2017.06.011. Epub 2017 Jun 28.

PMID:
28667860
20.

Plant coexistence can enhance phytoextraction of cadmium by tobacco (Nicotiana tabacum L.) in contaminated soil.

Liu L, Li Y, Tang J, Hu L, Chen X.

J Environ Sci (China). 2011;23(3):453-60.

PMID:
21520815

Supplemental Content

Support Center