Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Effects of plant genotype and nitrogen level on bacterial communities in rice shoots and roots.

Sasaki K, Ikeda S, Ohkubo T, Kisara C, Sato T, Minamisawa K.

Microbes Environ. 2013;28(3):391-5. Epub 2013 Aug 24.

2.

Phylogeny and functions of bacterial communities associated with field-grown rice shoots.

Okubo T, Ikeda S, Sasaki K, Ohshima K, Hattori M, Sato T, Minamisawa K.

Microbes Environ. 2014 Sep 17;29(3):329-32. Epub 2014 Aug 12.

3.

Rice root-associated bacteria: insights into community structures across 10 cultivars.

Hardoim PR, Andreote FD, Reinhold-Hurek B, Sessitsch A, van Overbeek LS, van Elsas JD.

FEMS Microbiol Ecol. 2011 Jul;77(1):154-64. doi: 10.1111/j.1574-6941.2011.01092.x. Epub 2011 Apr 11.

4.

Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions.

Ikeda S, Sasaki K, Okubo T, Yamashita A, Terasawa K, Bao Z, Liu D, Watanabe T, Murase J, Asakawa S, Eda S, Mitsui H, Sato T, Minamisawa K.

Microbes Environ. 2014;29(1):50-9. Epub 2014 Jan 24.

5.

The genotype of the calcium/calmodulin-dependent protein kinase gene (CCaMK) determines bacterial community diversity in rice roots under paddy and upland field conditions.

Ikeda S, Okubo T, Takeda N, Banba M, Sasaki K, Imaizumi-Anraku H, Fujihara S, Ohwaki Y, Ohshima K, Fukuta Y, Eda S, Mitsui H, Hattori M, Sato T, Shinano T, Minamisawa K.

Appl Environ Microbiol. 2011 Jul;77(13):4399-405. doi: 10.1128/AEM.00315-11. Epub 2011 May 6.

6.

Succession of bacterial populations during plant residue decomposition in rice field soil.

Rui J, Peng J, Lu Y.

Appl Environ Microbiol. 2009 Jul;75(14):4879-86. doi: 10.1128/AEM.00702-09. Epub 2009 May 22.

7.

Impact of Azospirillum sp. B510 inoculation on rice-associated bacterial communities in a paddy field.

Bao Z, Sasaki K, Okubo T, Ikeda S, Anda M, Hanzawa E, Kakizaki K, Sato T, Mitsui H, Minamisawa K.

Microbes Environ. 2013;28(4):487-90. Epub 2013 Nov 19.

8.

Zn uptake, translocation and grain Zn loading in rice (Oryza sativa L.) genotypes selected for Zn deficiency tolerance and high grain Zn.

Impa SM, Morete MJ, Ismail AM, Schulin R, Johnson-Beebout SE.

J Exp Bot. 2013 Jul;64(10):2739-51. doi: 10.1093/jxb/ert118. Epub 2013 May 22.

9.

Genotypic variation in the uptake, accumulation, and translocation of di-(2-ethylhexyl) phthalate by twenty cultivars of rice (Oryza sativa L.).

Cai QY, Xiao PY, Chen T, Lü H, Zhao HM, Zeng QY, Li YW, Li H, Xiang L, Mo CH.

Ecotoxicol Environ Saf. 2015 Jun;116:50-8. doi: 10.1016/j.ecoenv.2015.02.038. Epub 2015 Mar 10.

PMID:
25768422
10.

Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice.

Ueno D, Koyama E, Kono I, Ando T, Yano M, Ma JF.

Plant Cell Physiol. 2009 Dec;50(12):2223-33. doi: 10.1093/pcp/pcp160.

PMID:
19884249
11.

Sulfur Fertilization Changes the Community Structure of Rice Root-, and Soil- Associated Bacteria.

Masuda S, Bao Z, Okubo T, Sasaki K, Ikeda S, Shinoda R, Anda M, Kondo R, Mori Y, Minamisawa K.

Microbes Environ. 2016;31(1):70-5. doi: 10.1264/jsme2.ME15170. Epub 2016 Mar 5.

12.

A rice gene for microbial symbiosis, Oryza sativa CCaMK, reduces CH4 flux in a paddy field with low nitrogen input.

Bao Z, Watanabe A, Sasaki K, Okubo T, Tokida T, Liu D, Ikeda S, Imaizumi-Anraku H, Asakawa S, Sato T, Mitsui H, Minamisawa K.

Appl Environ Microbiol. 2014 Mar;80(6):1995-2003. doi: 10.1128/AEM.03646-13. Epub 2014 Jan 17.

13.

Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice.

Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S.

J Exp Bot. 2009;60(9):2677-88. doi: 10.1093/jxb/erp119. Epub 2009 Apr 28.

14.

Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa).

Wang X, Tam NF, Fu S, Ametkhan A, Ouyang Y, Ye Z.

Ann Bot. 2014 Aug;114(2):271-8. doi: 10.1093/aob/mcu117. Epub 2014 Jun 19.

15.

Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding.

Rose TJ, Impa SM, Rose MT, Pariasca-Tanaka J, Mori A, Heuer S, Johnson-Beebout SE, Wissuwa M.

Ann Bot. 2013 Jul;112(2):331-45. doi: 10.1093/aob/mcs217. Epub 2012 Oct 15. Review.

16.

Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis.

Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W.

Microb Ecol. 2008 Apr;55(3):415-24. Epub 2007 Aug 10.

PMID:
17690836
17.

Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding.

Ferrando L, Fernández Scavino A.

FEMS Microbiol Ecol. 2015 Sep;91(9):fiv104. doi: 10.1093/femsec/fiv104. Epub 2015 Aug 30.

PMID:
26324852
18.

Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants.

Bao Z, Okubo T, Kubota K, Kasahara Y, Tsurumaru H, Anda M, Ikeda S, Minamisawa K.

Appl Environ Microbiol. 2014 Aug;80(16):5043-52. doi: 10.1128/AEM.00969-14. Epub 2014 Jun 13.

19.

Cross-Species Network Analysis Uncovers Conserved Nitrogen-Regulated Network Modules in Rice.

Obertello M, Shrivastava S, Katari MS, Coruzzi GM.

Plant Physiol. 2015 Aug;168(4):1830-43. doi: 10.1104/pp.114.255877. Epub 2015 Jun 4.

20.

Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice.

Tan Z, Hurek T, Reinhold-Hurek B.

Environ Microbiol. 2003 Oct;5(10):1009-15.

PMID:
14510855

Supplemental Content

Support Center