Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 166

1.

Quantitative assessment of acoustic intensity in the focused ultrasound field using hydrophone and infrared imaging.

Yu Y, Shen G, Zhou Y, Bai J, Chen Y.

Ultrasound Med Biol. 2013 Nov;39(11):2021-33. doi: 10.1016/j.ultrasmedbio.2013.05.004. Epub 2013 Aug 22.

PMID:
23972377
2.

Theoretical framework for quantitatively estimating ultrasound beam intensities using infrared thermography.

Myers MR, Giridhar D.

J Acoust Soc Am. 2011 Jun;129(6):4073-83. doi: 10.1121/1.3575600.

PMID:
21682428
3.

Infrared mapping of ultrasound fields generated by medical transducers: feasibility of determining absolute intensity levels.

Khokhlova VA, Shmeleva SM, Gavrilov LR, Martin E, Sadhoo N, Shaw A.

J Acoust Soc Am. 2013 Aug;134(2):1586-97. doi: 10.1121/1.4812878.

4.

Experimental methods for improved spatial control of thermal lesions in magnetic resonance-guided focused ultrasound ablation.

Viallon M, Petrusca L, Auboiroux V, Goget T, Baboi L, Becker CD, Salomir R.

Ultrasound Med Biol. 2013 Sep;39(9):1580-95. doi: 10.1016/j.ultrasmedbio.2013.03.018. Epub 2013 Jun 29.

PMID:
23820250
5.

Magnetic resonance-guided shielding of prefocal acoustic obstacles in focused ultrasound therapy: application to intercostal ablation in liver.

Salomir R, Petrusca L, Auboiroux V, Muller A, Vargas MI, Morel DR, Goget T, Breguet R, Terraz S, Hopple J, Montet X, Becker CD, Viallon M.

Invest Radiol. 2013 Jun;48(6):366-80. doi: 10.1097/RLI.0b013e31827a90d7.

PMID:
23344514
6.

Endoluminal ultrasound applicators for MR-guided thermal ablation of pancreatic tumors: Preliminary design and evaluation in a porcine pancreas model.

Adams MS, Salgaonkar VA, Plata-Camargo J, Jones PD, Pascal-Tenorio A, Chen HY, Bouley DM, Sommer G, Pauly KB, Diederich CJ.

Med Phys. 2016 Jul;43(7):4184. doi: 10.1118/1.4953632.

7.

Calibration and Evaluation of Ultrasound Thermography UsingĀ Infrared Imaging.

Hsiao YS, Deng CX.

Ultrasound Med Biol. 2016 Feb;42(2):503-17. doi: 10.1016/j.ultrasmedbio.2015.09.021. Epub 2015 Nov 5.

8.

Improved intercostal HIFU ablation using a phased array transducer based on Fermat's spiral and Voronoi tessellation: A numerical evaluation.

Ramaekers P, Ries M, Moonen CT, de Greef M.

Med Phys. 2017 Mar;44(3):1071-1088. doi: 10.1002/mp.12082. Epub 2017 Feb 13.

PMID:
28058731
9.

Calibration of ultrasound backscatter temperature imaging for high-intensity focused ultrasound treatment planning.

Civale J, Rivens I, Ter Haar G, Morris H, Coussios C, Friend P, Bamber J.

Ultrasound Med Biol. 2013 Sep;39(9):1596-612. doi: 10.1016/j.ultrasmedbio.2013.04.001. Epub 2013 Jul 3.

PMID:
23830100
10.

Characterization of a fiber-optic displacement sensor for measurements in high-intensity focused ultrasound fields.

Haller J, Wilkens V, Jenderka KV, Koch C.

J Acoust Soc Am. 2011 Jun;129(6):3676-81. doi: 10.1121/1.3583538.

PMID:
21682392
11.

Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.

Zeqiri B, Zauhar G, Hodnett M, Barrie J.

Ultrasonics. 2011 May;51(4):420-4. doi: 10.1016/j.ultras.2010.09.006. Epub 2010 Nov 25.

PMID:
21163509
12.

Intercostal high intensity focused ultrasound for liver ablation: The influence of beam shaping on sonication efficacy and near-field risks.

de Greef M, Schubert G, Wijlemans JW, Koskela J, Bartels LW, Moonen CT, Ries M.

Med Phys. 2015 Aug;42(8):4685-97. doi: 10.1118/1.4925056.

PMID:
26233196
13.

Quantitative estimation of ultrasound beam intensities using infrared thermography-Experimental validation.

Giridhar D, Robinson RA, Liu Y, Sliwa J, Zderic V, Myers MR.

J Acoust Soc Am. 2012 Jun;131(6):4283-91. doi: 10.1121/1.4711006.

PMID:
22712903
14.

A high-precision angular control system for HIFU calibration.

Park D, Park J, Kim H, Kim CH, Han TY, Park H, Seo J.

Ultrasonics. 2013 Jan;53(1):45-52. doi: 10.1016/j.ultras.2012.03.012. Epub 2012 Apr 10.

PMID:
22541892
16.

In Vivo application and localization of transcranial focused ultrasound using dual-mode ultrasound arrays.

Haritonova A, Liu D, Ebbini ES.

IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Dec;62(12):2031-42. doi: 10.1109/TUFFC.2014.006882.

17.

Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.

Zhou Y.

Med Eng Phys. 2015 Mar;37(3):335-40. doi: 10.1016/j.medengphy.2015.01.014. Epub 2015 Feb 7.

PMID:
25659300
18.

Transcostal high-intensity focused ultrasound treatment using phased array with geometric correction.

Qiao S, Shen G, Bai J, Chen Y.

J Acoust Soc Am. 2013 Aug;134(2):1503-14. doi: 10.1121/1.4812869.

PMID:
23927190
19.

Endoluminal MR-guided ultrasonic applicator embedding cylindrical phased-array transducers and opposed-solenoid detection coil.

Rata M, Birlea V, Murillo A, Paquet C, Cotton F, Salomir R.

Magn Reson Med. 2015 Jan;73(1):417-26. doi: 10.1002/mrm.25099. Epub 2014 Jan 29.

PMID:
24478117
20.

Laser-induced fluorescence thermometry of heating in water from short bursts of high intensity focused ultrasound.

Al-Qraini MM, Canney MS, Oweis GF.

Ultrasound Med Biol. 2013 Apr;39(4):647-59. doi: 10.1016/j.ultrasmedbio.2012.11.018.

PMID:
23497843

Supplemental Content

Support Center