Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

A practical data recovery technique for long-term strain monitoring of mega columns during construction.

Choi SW, Kwon E, Kim Y, Hong K, Park HS.

Sensors (Basel). 2013 Aug 19;13(8):10931-43. doi: 10.3390/s130810931.

2.

An integrative structural health monitoring system for the local/global responses of a large-scale irregular building under construction.

Park HS, Shin Y, Choi SW, Kim Y.

Sensors (Basel). 2013 Jul 15;13(7):9085-103. doi: 10.3390/s130709085.

3.

A wireless laser displacement sensor node for structural health monitoring.

Park HS, Kim JM, Choi SW, Kim Y.

Sensors (Basel). 2013 Sep 30;13(10):13204-16. doi: 10.3390/s131013204.

4.

A strain-based load identification model for beams in building structures.

Hong K, Lee J, Choi SW, Kim Y, Park HS.

Sensors (Basel). 2013 Aug 5;13(8):9909-20. doi: 10.3390/s130809909.

5.

An overview of wireless structural health monitoring for civil structures.

Lynch JP.

Philos Trans A Math Phys Eng Sci. 2007 Feb 15;365(1851):345-72. Review.

6.

Symbolic and graphical representation scheme for sensors deployed in large-scale structures.

Park HS, Shin Y, Choi SW, Kim Y.

Sensors (Basel). 2013 Jul 31;13(8):9774-89. doi: 10.3390/s130809774.

7.

Modeling of surface acoustic wave strain sensors using coupling-of-modes analysis.

Mc Cormack B, Geraghty D, O'Mahony M.

IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Nov;58(11):2461-8. doi: 10.1109/TUFFC.2011.2102.

PMID:
22083778
8.

A practical monitoring system for the structural safety of mega-trusses using wireless vibrating wire strain gauges.

Park HS, Lee HY, Choi SW, Kim Y.

Sensors (Basel). 2013 Dec 16;13(12):17346-61. doi: 10.3390/s131217346.

9.

Wireless laser range finder system for vertical displacement monitoring of mega-trusses during construction.

Park HS, Son S, Choi SW, Kim Y.

Sensors (Basel). 2013 May 6;13(5):5796-813. doi: 10.3390/s130505796.

10.

Time-frequency and time-scale analyses for structural health monitoring.

Staszewski WJ, Robertson AN.

Philos Trans A Math Phys Eng Sci. 2007 Feb 15;365(1851):449-77. Review.

11.

Damage identification using inverse methods.

Friswell MI.

Philos Trans A Math Phys Eng Sci. 2007 Feb 15;365(1851):393-410. Review.

12.
13.

Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer.

Zhou J, Liao C, Wang Y, Yin G, Zhong X, Yang K, Sun B, Wang G, Li Z.

Opt Express. 2014 Jan 27;22(2):1680-6. doi: 10.1364/OE.22.001680.

PMID:
24515175
14.

Tensile elastic recovery of elastomeric impression materials.

Lawson NC, Burgess JO, Litaker MS.

J Prosthet Dent. 2008 Jul;100(1):29-33. doi: 10.1016/S0022-3913(08)60131-6.

PMID:
18589071
15.

Characterization of flexible copolymer optical fibers for force sensing applications.

Krehel M, Rossi RM, Bona GL, Scherer LJ.

Sensors (Basel). 2013 Sep 9;13(9):11956-68. doi: 10.3390/s130911956.

16.

Damage prognosis: the future of structural health monitoring.

Farrar CR, Lieven NA.

Philos Trans A Math Phys Eng Sci. 2007 Feb 15;365(1851):623-32. Review.

17.

Fatigue in aerostructures--where structural health monitoring can contribute to a complex subject.

Boller C, Buderath M.

Philos Trans A Math Phys Eng Sci. 2007 Feb 15;365(1851):561-87. Review.

18.

Mechanical properties of recycled concrete in marine environment.

Wang J, Huang T, Liu X, Wu P, Guo Z.

ScientificWorldJournal. 2013 May 7;2013:728357. doi: 10.1155/2013/728357. Print 2013.

19.

An automated damage identification technique based on vibration and wave propagation data.

Mal A, Banerjee S, Ricci F.

Philos Trans A Math Phys Eng Sci. 2007 Feb 15;365(1851):479-91. Review.

20.

Novel method for mechanical characterization of polymeric nanofibers.

Naraghi M, Chasiotis I, Kahn H, Wen Y, Dzenis Y.

Rev Sci Instrum. 2007 Aug;78(8):085108.

Supplemental Content

Support Center