Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Proteome-wide detection and quantitative analysis of irreversible cysteine oxidation using long column UPLC-pSRM.

Lee CF, Paull TT, Person MD.

J Proteome Res. 2013 Oct 4;12(10):4302-15. doi: 10.1021/pr400201d.

2.

Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling.

Su D, Gaffrey MJ, Guo J, Hatchell KE, Chu RK, Clauss TR, Aldrich JT, Wu S, Purvine S, Camp DG, Smith RD, Thrall BD, Qian WJ.

Free Radic Biol Med. 2014 Feb;67:460-70. doi: 10.1016/j.freeradbiomed.2013.12.004.

3.

Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation.

Schilling B, Rardin MJ, MacLean BX, Zawadzka AM, Frewen BE, Cusack MP, Sorensen DJ, Bereman MS, Jing E, Wu CC, Verdin E, Kahn CR, Maccoss MJ, Gibson BW.

Mol Cell Proteomics. 2012 May;11(5):202-14. doi: 10.1074/mcp.M112.017707.

4.

Profiling thiol redox proteome using isotope tagging mass spectrometry.

Parker J, Zhu N, Zhu M, Chen S.

J Vis Exp. 2012 Mar 24;(61). pii: 3766. doi: 10.3791/3766.

5.

Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic acid post-translational modifications.

Paulech J, Liddy KA, Engholm-Keller K, White MY, Cordwell SJ.

Mol Cell Proteomics. 2015 Mar;14(3):609-20. doi: 10.1074/mcp.M114.044347.

6.

Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.

Liu P, Zhang H, Wang H, Xia Y.

Proteomics. 2014 Mar;14(6):750-62. doi: 10.1002/pmic.201300307.

PMID:
24376095
7.

A simple isotopic labeling method to study cysteine oxidation in Alzheimer's disease: oxidized cysteine-selective dimethylation (OxcysDML).

Gu L, Robinson RA.

Anal Bioanal Chem. 2016 Apr;408(11):2993-3004. doi: 10.1007/s00216-016-9307-4.

PMID:
26800981
8.

Effects of biological oxidants on the catalytic activity and structure of group VIA phospholipase A2.

Song H, Bao S, Ramanadham S, Turk J.

Biochemistry. 2006 May 23;45(20):6392-406.

9.

Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols.

Sethuraman M, McComb ME, Heibeck T, Costello CE, Cohen RA.

Mol Cell Proteomics. 2004 Mar;3(3):273-8.

10.

Novel oxidative modifications in redox-active cysteine residues.

Jeong J, Jung Y, Na S, Jeong J, Lee E, Kim MS, Choi S, Shin DH, Paek E, Lee HY, Lee KJ.

Mol Cell Proteomics. 2011 Mar;10(3):M110.000513. doi: 10.1074/mcp.M110.000513.

11.

Identification of total reversible cysteine oxidation in an atherosclerosis model using a modified biotin switch assay.

Li R, Huang J, Kast J.

J Proteome Res. 2015 May 1;14(5):2026-35. doi: 10.1021/acs.jproteome.5b00133.

PMID:
25767911
12.

Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures.

Sethuraman M, McComb ME, Huang H, Huang S, Heibeck T, Costello CE, Cohen RA.

J Proteome Res. 2004 Nov-Dec;3(6):1228-33.

PMID:
15595732
13.

Solid-phase capture for the detection and relative quantification of S-nitrosoproteins by mass spectrometry.

Thompson JW, Forrester MT, Moseley MA, Foster MW.

Methods. 2013 Aug 1;62(2):130-7. doi: 10.1016/j.ymeth.2012.10.001. Review.

14.

Quantifying reversible oxidation of protein thiols in photosynthetic organisms.

Slade WO, Werth EG, McConnell EW, Alvarez S, Hicks LM.

J Am Soc Mass Spectrom. 2015 Apr;26(4):631-40. doi: 10.1007/s13361-014-1073-y.

PMID:
25698223
15.

Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome.

Paulech J, Solis N, Edwards AV, Puckeridge M, White MY, Cordwell SJ.

Anal Chem. 2013 Apr 2;85(7):3774-80. doi: 10.1021/ac400166e.

PMID:
23438843
16.

Multiple functions of Nm23-H1 are regulated by oxido-reduction system.

Lee E, Jeong J, Kim SE, Song EJ, Kang SW, Lee KJ.

PLoS One. 2009 Nov 23;4(11):e7949. doi: 10.1371/journal.pone.0007949.

17.

In-depth analysis of cysteine oxidation by the RBC proteome: advantage of peroxiredoxin II knockout mice.

Yang HY, Kwon J, Choi HI, Park SH, Yang U, Park HR, Ren L, Chung KJ, Kim YU, Park BJ, Jeong SH, Lee TH.

Proteomics. 2012 Jan;12(1):101-12. doi: 10.1002/pmic.201100275.

PMID:
22113967
18.

The SNO/SOH TMT strategy for combinatorial analysis of reversible cysteine oxidations.

Wojdyla K, Williamson J, Roepstorff P, Rogowska-Wrzesinska A.

J Proteomics. 2015 Jan 15;113:415-34. doi: 10.1016/j.jprot.2014.10.015.

PMID:
25449835
19.

Sulfhydryl-specific probe for monitoring protein redox sensitivity.

Lee JJ, Ha S, Kim HJ, Ha HJ, Lee HY, Lee KJ.

ACS Chem Biol. 2014 Dec 19;9(12):2883-94. doi: 10.1021/cb500839j.

PMID:
25354229
20.

Supplemental Content

Support Center