Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 637

1.

Glaucoma diagnostic ability of ganglion cell-inner plexiform layer thickness differs according to the location of visual field loss.

Shin HY, Park HY, Jung KI, Choi JA, Park CK.

Ophthalmology. 2014 Jan;121(1):93-9. doi: 10.1016/j.ophtha.2013.06.041. Epub 2013 Aug 17.

PMID:
23962652
2.

Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head.

Mwanza JC, Durbin MK, Budenz DL, Sayyad FE, Chang RT, Neelakantan A, Godfrey DG, Carter R, Crandall AS.

Ophthalmology. 2012 Jun;119(6):1151-8. doi: 10.1016/j.ophtha.2011.12.014. Epub 2012 Feb 23.

PMID:
22365056
3.

Automated Detection of Hemifield Difference across Horizontal Raphe on Ganglion Cell--Inner Plexiform Layer Thickness Map.

Kim YK, Yoo BW, Kim HC, Park KH.

Ophthalmology. 2015 Nov;122(11):2252-60. doi: 10.1016/j.ophtha.2015.07.013. Epub 2015 Aug 13.

PMID:
26278860
4.

Glaucoma diagnostic value of the total macular thickness and ganglion cell-inner plexiform layer thickness according to optic disc area.

Yoon MH, Park SJ, Kim CY, Chin HS, Kim NR.

Br J Ophthalmol. 2014 Mar;98(3):315-21. doi: 10.1136/bjophthalmol-2013-303185. Epub 2014 Jan 2.

PMID:
24385290
5.

Diagnostic performance of optical coherence tomography ganglion cell--inner plexiform layer thickness measurements in early glaucoma.

Mwanza JC, Budenz DL, Godfrey DG, Neelakantan A, Sayyad FE, Chang RT, Lee RK.

Ophthalmology. 2014 Apr;121(4):849-54. doi: 10.1016/j.ophtha.2013.10.044. Epub 2014 Jan 3.

PMID:
24393348
6.

Diagnostic ability of macular ganglion cell asymmetry for glaucoma.

Hwang YH, Ahn SI, Ko SJ.

Clin Exp Ophthalmol. 2015 Nov;43(8):720-6. doi: 10.1111/ceo.12545. Epub 2015 Jul 1.

PMID:
25939316
7.

Ganglion cell-inner plexiform layer thickness of high definition optical coherence tomography in perimetric and preperimetric glaucoma.

Begum VU, Addepalli UK, Yadav RK, Shankar K, Senthil S, Garudadri CS, Rao HL.

Invest Ophthalmol Vis Sci. 2014 Jul 11;55(8):4768-75. doi: 10.1167/iovs.14-14598.

PMID:
25015361
8.

Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression.

Leung CK, Ye C, Weinreb RN, Yu M, Lai G, Lam DS.

Ophthalmology. 2013 Dec;120(12):2485-92. doi: 10.1016/j.ophtha.2013.07.021. Epub 2013 Aug 30.

PMID:
23993360
9.

Glaucoma diagnostic accuracy of optical coherence tomography parameters in early glaucoma with different types of optic disc damage.

Shin HY, Park HY, Jung Y, Choi JA, Park CK.

Ophthalmology. 2014 Oct;121(10):1990-7. doi: 10.1016/j.ophtha.2014.04.030. Epub 2014 Jun 14.

PMID:
24935284
10.

Ganglion Cell-Inner Plexiform Layer Change Detected by Optical Coherence Tomography Indicates Progression in Advanced Glaucoma.

Shin JW, Sung KR, Lee GC, Durbin MK, Cheng D.

Ophthalmology. 2017 Oct;124(10):1466-1474. doi: 10.1016/j.ophtha.2017.04.023. Epub 2017 May 23.

PMID:
28549518
11.

Glaucoma diagnostic ability of quadrant and clock-hour neuroretinal rim assessment using cirrus HD optical coherence tomography.

Hwang YH, Kim YY.

Invest Ophthalmol Vis Sci. 2012 Apr 24;53(4):2226-34. doi: 10.1167/iovs.11-8689.

PMID:
22410556
12.

Measurement of macular ganglion cell layer and circumpapillary retinal nerve fiber layer to detect paracentral scotoma in early glaucoma.

Lee J, Hangai M, Kimura Y, Takayama K, Kee C, Yoshimura N.

Graefes Arch Clin Exp Ophthalmol. 2013 Aug;251(8):2003-12. doi: 10.1007/s00417-013-2344-1. Epub 2013 Apr 26.

PMID:
23620092
13.

Macular structure parameters as an automated indicator of paracentral scotoma in early glaucoma.

Kimura Y, Hangai M, Matsumoto A, Akagi T, Ikeda HO, Ohkubo S, Sugiyama K, Iwase A, Araie M, Yoshimura N.

Am J Ophthalmol. 2013 Nov;156(5):907-917.e1. doi: 10.1016/j.ajo.2013.06.029. Epub 2013 Aug 21.

PMID:
23972895
14.

Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage.

Sihota R, Sony P, Gupta V, Dada T, Singh R.

Invest Ophthalmol Vis Sci. 2006 May;47(5):2006-10.

PMID:
16639009
15.

Trend-based Analysis of Ganglion Cell-Inner Plexiform Layer Thickness Changes on Optical Coherence Tomography in Glaucoma Progression.

Lee WJ, Kim YK, Park KH, Jeoung JW.

Ophthalmology. 2017 Sep;124(9):1383-1391. doi: 10.1016/j.ophtha.2017.03.013. Epub 2017 Apr 12.

PMID:
28412067
16.

Validity of the temporal-to-nasal macular ganglion cell-inner plexiform layer thickness ratio as a diagnostic parameter in early glaucoma.

Park JW, Jung HH, Heo H, Park SW.

Acta Ophthalmol. 2015 Aug;93(5):e356-65. doi: 10.1111/aos.12666. Epub 2015 Jan 25.

17.

A novel method to detect local ganglion cell loss in early glaucoma using spectral-domain optical coherence tomography.

Takayama K, Hangai M, Durbin M, Nakano N, Morooka S, Akagi T, Ikeda HO, Yoshimura N.

Invest Ophthalmol Vis Sci. 2012 Oct 5;53(11):6904-13. doi: 10.1167/iovs.12-10210.

PMID:
22977136
18.

Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study.

Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H, Xu G, Fan N, Huang L, Pang CP, Lam DS.

Ophthalmology. 2009 Jul;116(7):1257-63, 1263.e1-2. doi: 10.1016/j.ophtha.2009.04.013. Epub 2009 May 22.

PMID:
19464061
19.

Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma.

Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, Kim YJ, Park SB, Hong HE, Kook MS.

Invest Ophthalmol Vis Sci. 2010 Mar;51(3):1446-52. doi: 10.1167/iovs.09-4258. Epub 2009 Oct 15.

PMID:
19834029
20.

Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection.

Leung CK, Lam S, Weinreb RN, Liu S, Ye C, Liu L, He J, Lai GW, Li T, Lam DS.

Ophthalmology. 2010 Sep;117(9):1684-91. doi: 10.1016/j.ophtha.2010.01.026. Epub 2010 Jul 21.

PMID:
20663563

Supplemental Content

Support Center