Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 152

1.

Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose.

Payne CM, Resch MG, Chen L, Crowley MF, Himmel ME, Taylor LE 2nd, Sandgren M, Ståhlberg J, Stals I, Tan Z, Beckham GT.

Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14646-51. doi: 10.1073/pnas.1309106110. Epub 2013 Aug 19.

2.

The tryptophan residue at the active site tunnel entrance of Trichoderma reesei cellobiohydrolase Cel7A is important for initiation of degradation of crystalline cellulose.

Nakamura A, Tsukada T, Auer S, Furuta T, Wada M, Koivula A, Igarashi K, Samejima M.

J Biol Chem. 2013 May 10;288(19):13503-10. doi: 10.1074/jbc.M113.452623. Epub 2013 Mar 26.

3.

Identification of amino acids responsible for processivity in a Family 1 carbohydrate-binding module from a fungal cellulase.

Beckham GT, Matthews JF, Bomble YJ, Bu L, Adney WS, Himmel ME, Nimlos MR, Crowley MF.

J Phys Chem B. 2010 Jan 28;114(3):1447-53. doi: 10.1021/jp908810a.

PMID:
20050714
4.

Kinetics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity.

Kari J, Olsen J, Borch K, Cruys-Bagger N, Jensen K, Westh P.

J Biol Chem. 2014 Nov 21;289(47):32459-68. doi: 10.1074/jbc.M114.604264. Epub 2014 Sep 30.

5.

Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A.

Kont R, Kari J, Borch K, Westh P, Väljamäe P.

J Biol Chem. 2016 Dec 9;291(50):26013-26023. Epub 2016 Oct 25.

PMID:
27780868
6.

Single-molecule Imaging Analysis of Binding, Processive Movement, and Dissociation of Cellobiohydrolase Trichoderma reesei Cel6A and Its Domains on Crystalline Cellulose.

Nakamura A, Tasaki T, Ishiwata D, Yamamoto M, Okuni Y, Visootsat A, Maximilien M, Noji H, Uchiyama T, Samejima M, Igarashi K, Iino R.

J Biol Chem. 2016 Oct 21;291(43):22404-22413. Epub 2016 Sep 8.

PMID:
27609516
7.

The O-glycosylated linker from the Trichoderma reesei Family 7 cellulase is a flexible, disordered protein.

Beckham GT, Bomble YJ, Matthews JF, Taylor CB, Resch MG, Yarbrough JM, Decker SR, Bu L, Zhao X, McCabe C, Wohlert J, Bergenstråhle M, Brady JW, Adney WS, Himmel ME, Crowley MF.

Biophys J. 2010 Dec 1;99(11):3773-81. doi: 10.1016/j.bpj.2010.10.032.

8.

Cellulase-lignin interactions-the role of carbohydrate-binding module and pH in non-productive binding.

Rahikainen JL, Evans JD, Mikander S, Kalliola A, Puranen T, Tamminen T, Marjamaa K, Kruus K.

Enzyme Microb Technol. 2013 Oct 10;53(5):315-21. doi: 10.1016/j.enzmictec.2013.07.003. Epub 2013 Jul 18.

PMID:
24034430
9.

The impact of Trichoderma reesei Cel7A carbohydrate binding domain mutations on its binding to a cellulose surface: a molecular dynamics free energy study.

Li T, Yan S, Yao L.

J Mol Model. 2012 Apr;18(4):1355-64. doi: 10.1007/s00894-011-1167-4. Epub 2011 Jul 15.

PMID:
21761177
10.

O-glycosylation effects on family 1 carbohydrate-binding module solution structures.

Happs RM, Guan X, Resch MG, Davis MF, Beckham GT, Tan Z, Crowley MF.

FEBS J. 2015 Nov;282(22):4341-56. doi: 10.1111/febs.13500. Epub 2015 Sep 21.

11.

Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin.

Strobel KL, Pfeiffer KA, Blanch HW, Clark DS.

J Biol Chem. 2015 Sep 11;290(37):22818-26. doi: 10.1074/jbc.M115.673467. Epub 2015 Jul 24.

12.

Binding preferences, surface attachment, diffusivity, and orientation of a family 1 carbohydrate-binding module on cellulose.

Nimlos MR, Beckham GT, Matthews JF, Bu L, Himmel ME, Crowley MF.

J Biol Chem. 2012 Jun 8;287(24):20603-12. doi: 10.1074/jbc.M112.358184. Epub 2012 Apr 10.

13.
14.

Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases.

Vermaas JV, Crowley MF, Beckham GT, Payne CM.

J Phys Chem B. 2015 May 21;119(20):6129-43. doi: 10.1021/acs.jpcb.5b00778. Epub 2015 Apr 2.

PMID:
25785779
15.

Binding site dynamics and aromatic-carbohydrate interactions in processive and non-processive family 7 glycoside hydrolases.

Taylor CB, Payne CM, Himmel ME, Crowley MF, McCabe C, Beckham GT.

J Phys Chem B. 2013 May 2;117(17):4924-33. doi: 10.1021/jp401410h. Epub 2013 Apr 10.

PMID:
23534900
16.

The cellulose-binding domain of cellobiohydrolase Cel7A from Trichoderma reesei is also a thermostabilizing domain.

Hall M, Rubin J, Behrens SH, Bommarius AS.

J Biotechnol. 2011 Oct 10;155(4):370-6. doi: 10.1016/j.jbiotec.2011.07.016. Epub 2011 Jul 22.

PMID:
21807036
17.

Effect of temperature on lignin-derived inhibition studied with three structurally different cellobiohydrolases.

Rahikainen JL, Moilanen U, Nurmi-Rantala S, Lappas A, Koivula A, Viikari L, Kruus K.

Bioresour Technol. 2013 Oct;146:118-25. doi: 10.1016/j.biortech.2013.07.069. Epub 2013 Jul 20.

PMID:
23920120
18.

Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens.

Rytioja J, Hildén K, Mäkinen S, Vehmaanperä J, Hatakka A, Mäkelä MR.

PLoS One. 2015 Dec 14;10(12):e0145166. doi: 10.1371/journal.pone.0145166. eCollection 2015.

19.
20.

Specificity of O-glycosylation in enhancing the stability and cellulose binding affinity of Family 1 carbohydrate-binding modules.

Chen L, Drake MR, Resch MG, Greene ER, Himmel ME, Chaffey PK, Beckham GT, Tan Z.

Proc Natl Acad Sci U S A. 2014 May 27;111(21):7612-7. doi: 10.1073/pnas.1402518111. Epub 2014 May 12.

Supplemental Content

Support Center