Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 181

2.

Pre- and post-synaptic mechanisms of synaptic strength homeostasis revealed by slowpoke and shaker K+ channel mutations in Drosophila.

Lee J, Ueda A, Wu CF.

Neuroscience. 2008 Jul 17;154(4):1283-96. doi: 10.1016/j.neuroscience.2008.04.043. Epub 2008 May 2.

3.

Orchestration of stepwise synaptic growth by K+ and Ca2+ channels in Drosophila.

Lee J, Wu CF.

J Neurosci. 2010 Nov 24;30(47):15821-33. doi: 10.1523/JNEUROSCI.3448-10.2010.

4.

Dendritic and Axonal L-Type Calcium Channels Cooperate to Enhance Motoneuron Firing Output during Drosophila Larval Locomotion.

Kadas D, Klein A, Krick N, Worrell JW, Ryglewski S, Duch C.

J Neurosci. 2017 Nov 8;37(45):10971-10982. doi: 10.1523/JNEUROSCI.1064-17.2017. Epub 2017 Oct 6.

PMID:
28986465
5.

Cav2-type calcium channels encoded by cac regulate AP-independent neurotransmitter release at cholinergic synapses in adult Drosophila brain.

Gu H, Jiang SA, Campusano JM, Iniguez J, Su H, Hoang AA, Lavian M, Sun X, O'Dowd DK.

J Neurophysiol. 2009 Jan;101(1):42-53. doi: 10.1152/jn.91103.2008. Epub 2008 Nov 12.

6.

Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release.

Hu H, Shao LR, Chavoshy S, Gu N, Trieb M, Behrens R, Laake P, Pongs O, Knaus HG, Ottersen OP, Storm JF.

J Neurosci. 2001 Dec 15;21(24):9585-97.

7.
8.

The role of cAMP in synaptic homeostasis in response to environmental temperature challenges and hyperexcitability mutations.

Ueda A, Wu CF.

Front Cell Neurosci. 2015 Feb 2;9:10. doi: 10.3389/fncel.2015.00010. eCollection 2015.

9.

Synaptic excitation is regulated by the postsynaptic dSK channel at the Drosophila larval NMJ.

Gertner DM, Desai S, Lnenicka GA.

J Neurophysiol. 2014 Jun 15;111(12):2533-43. doi: 10.1152/jn.00903.2013. Epub 2014 Mar 26.

10.
11.

Presynaptic BK channel localization is dependent on the hierarchical organization of alpha-catulin and dystrobrevin and fine-tuned by CaV2 calcium channels.

Oh KH, Abraham LS, Gegg C, Silvestri C, Huang YC, Alkema MJ, Furst J, Raicu D, Kim H.

BMC Neurosci. 2015 Apr 24;16:26. doi: 10.1186/s12868-015-0166-2.

12.
13.

Regulation of synaptic development and function by the Drosophila PDZ protein Dyschronic.

Jepson JE, Shahidullah M, Liu D, le Marchand SJ, Liu S, Wu MN, Levitan IB, Dalva MB, Koh K.

Development. 2014 Dec;141(23):4548-57. doi: 10.1242/dev.109538. Epub 2014 Oct 30.

14.

RIM controls homeostatic plasticity through modulation of the readily-releasable vesicle pool.

Müller M, Liu KS, Sigrist SJ, Davis GW.

J Neurosci. 2012 Nov 21;32(47):16574-85. doi: 10.1523/JNEUROSCI.0981-12.2012.

15.

Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization.

Paradis S, Sweeney ST, Davis GW.

Neuron. 2001 Jun;30(3):737-49. Erratum in: Neuron 2001 Jul 19;31(1):167.

16.

Developmental consequences of neuromuscular junctions with reduced presynaptic calcium channel function.

Xing B, Ashleigh Long A, Harrison DA, Cooper RL.

Synapse. 2005 Sep 1;57(3):132-47.

PMID:
15945059
17.

A presynaptic homeostatic signaling system composed of the Eph receptor, ephexin, Cdc42, and CaV2.1 calcium channels.

Frank CA, Pielage J, Davis GW.

Neuron. 2009 Feb 26;61(4):556-69. doi: 10.1016/j.neuron.2008.12.028.

18.
19.

Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis.

Frank CA, Kennedy MJ, Goold CP, Marek KW, Davis GW.

Neuron. 2006 Nov 22;52(4):663-77.

20.

Delayed synaptic transmission in Drosophila cacophonynull embryos.

Hou J, Tamura T, Kidokoro Y.

J Neurophysiol. 2008 Nov;100(5):2833-42. doi: 10.1152/jn.90342.2008. Epub 2008 Sep 24.

Supplemental Content

Support Center