Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 283

1.

Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate.

Lou H, Wang M, Lai H, Lin X, Zhou M, Yang D, Qiu X.

Bioresour Technol. 2013 Oct;146:478-84. doi: 10.1016/j.biortech.2013.07.115. Epub 2013 Jul 30.

PMID:
23958680
2.

Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates.

Lin X, Qiu X, Yuan L, Li Z, Lou H, Zhou M, Yang D.

Bioresour Technol. 2015 Jun;185:165-70. doi: 10.1016/j.biortech.2015.02.067. Epub 2015 Feb 21.

PMID:
25768419
3.

Improving enzymatic hydrolysis of lignocellulosic substrates with pre-hydrolysates by adding cetyltrimethylammonium bromide to neutralize lignosulfonate.

Cai C, Qiu X, Lin X, Lou H, Pang Y, Yang D, Chen S, Cai K.

Bioresour Technol. 2016 Sep;216:968-75. doi: 10.1016/j.biortech.2016.06.043. Epub 2016 Jun 16.

PMID:
27343448
4.

pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses.

Lou H, Zhu JY, Lan TQ, Lai H, Qiu X.

ChemSusChem. 2013 May;6(5):919-27. doi: 10.1002/cssc.201200859. Epub 2013 Mar 28.

PMID:
23554287
5.

Cellulase-lignin interactions-the role of carbohydrate-binding module and pH in non-productive binding.

Rahikainen JL, Evans JD, Mikander S, Kalliola A, Puranen T, Tamminen T, Marjamaa K, Kruus K.

Enzyme Microb Technol. 2013 Oct 10;53(5):315-21. doi: 10.1016/j.enzmictec.2013.07.003. Epub 2013 Jul 18.

PMID:
24034430
6.

Effect of temperature on lignin-derived inhibition studied with three structurally different cellobiohydrolases.

Rahikainen JL, Moilanen U, Nurmi-Rantala S, Lappas A, Koivula A, Viikari L, Kruus K.

Bioresour Technol. 2013 Oct;146:118-25. doi: 10.1016/j.biortech.2013.07.069. Epub 2013 Jul 20.

PMID:
23920120
7.

Effect of the molecular structure of lignin-based polyoxyethylene ether on enzymatic hydrolysis efficiency and kinetics of lignocelluloses.

Lin X, Qiu X, Zhu D, Li Z, Zhan N, Zheng J, Lou H, Zhou M, Yang D.

Bioresour Technol. 2015 Oct;193:266-73. doi: 10.1016/j.biortech.2015.06.089. Epub 2015 Jun 25.

PMID:
26141287
8.

Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses.

Wang Z, Lan T, Zhu J.

Biotechnol Biofuels. 2013 Jan 28;6(1):9. doi: 10.1186/1754-6834-6-9.

9.

Using polyvinylpyrrolidone to enhance the enzymatic hydrolysis of lignocelluloses by reducing the cellulase non-productive adsorption on lignin.

Cai C, Qiu X, Zeng M, Lin M, Lin X, Lou H, Zhan X, Pang Y, Huang J, Xie L.

Bioresour Technol. 2017 Mar;227:74-81. doi: 10.1016/j.biortech.2016.12.002. Epub 2016 Dec 5.

PMID:
28013139
10.

The mechanism of poly(ethylene glycol) 4000 effect on enzymatic hydrolysis of lignocellulose.

Li J, Li S, Fan C, Yan Z.

Colloids Surf B Biointerfaces. 2012 Jan 1;89:203-10. doi: 10.1016/j.colsurfb.2011.09.019. Epub 2011 Sep 17.

PMID:
21982216
11.

Eliminating inhibition of enzymatic hydrolysis by lignosulfonate in unwashed sulfite-pretreated aspen using metal salts.

Liu H, Zhu JY.

Bioresour Technol. 2010 Dec;101(23):9120-7. doi: 10.1016/j.biortech.2010.07.035. Epub 2010 Jul 14.

PMID:
20674338
12.

Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption.

Rahikainen JL, Martin-Sampedro R, Heikkinen H, Rovio S, Marjamaa K, Tamminen T, Rojas OJ, Kruus K.

Bioresour Technol. 2013 Apr;133:270-8. doi: 10.1016/j.biortech.2013.01.075. Epub 2013 Jan 26.

PMID:
23428824
13.

Engineering Cel7A carbohydrate binding module and linker for reduced lignin inhibition.

Strobel KL, Pfeiffer KA, Blanch HW, Clark DS.

Biotechnol Bioeng. 2016 Jun;113(6):1369-74. doi: 10.1002/bit.25889. Epub 2015 Dec 8.

PMID:
26616493
14.

Impact of surfactants on pretreatment of corn stover.

Qing Q, Yang B, Wyman CE.

Bioresour Technol. 2010 Aug;101(15):5941-51. doi: 10.1016/j.biortech.2010.03.003. Epub 2010 Mar 20.

PMID:
20304637
15.

Improving the enzymatic hydrolysis of dilute acid pretreated wheat straw by metal ion blocking of non-productive cellulase adsorption on lignin.

Akimkulova A, Zhou Y, Zhao X, Liu D.

Bioresour Technol. 2016 May;208:110-116. doi: 10.1016/j.biortech.2016.02.059. Epub 2016 Feb 23.

PMID:
26930032
16.

Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin.

Strobel KL, Pfeiffer KA, Blanch HW, Clark DS.

J Biol Chem. 2015 Sep 11;290(37):22818-26. doi: 10.1074/jbc.M115.673467. Epub 2015 Jul 24.

17.

Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques.

Wang QQ, He Z, Zhu Z, Zhang YH, Ni Y, Luo XL, Zhu JY.

Biotechnol Bioeng. 2012 Feb;109(2):381-9. doi: 10.1002/bit.23330. Epub 2011 Sep 21.

PMID:
21915856
18.

Enzymatic hydrolysis, adsorption, and recycling during hydrolysis of bagasse sulfite pulp.

Ouyang J, Liu B, Zhang M, Zheng Z, Yu H.

Bioresour Technol. 2013 Oct;146:288-93. doi: 10.1016/j.biortech.2013.07.019. Epub 2013 Jul 12.

PMID:
23948265
19.

Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content.

Martín-Sampedro R, Rahikainen JL, Johansson LS, Marjamaa K, Laine J, Kruus K, Rojas OJ.

Biomacromolecules. 2013 Apr 8;14(4):1231-9. doi: 10.1021/bm400230s. Epub 2013 Mar 25.

PMID:
23484974
20.

Temperature sensitivity of cellulase adsorption on lignin and its impact on enzymatic hydrolysis of lignocellulosic biomass.

Zheng Y, Zhang S, Miao S, Su Z, Wang P.

J Biotechnol. 2013 Jul 10;166(3):135-43. doi: 10.1016/j.jbiotec.2013.04.018. Epub 2013 May 4.

Supplemental Content

Support Center