Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 138

1.

Novel dicarboxylate selectivity in an insect glutamate transporter homolog.

Wang H, Rascoe AM, Holley DC, Gouaux E, Kavanaugh MP.

PLoS One. 2013 Aug 7;8(8):e70947. doi: 10.1371/journal.pone.0070947. eCollection 2013.

2.
3.

Molecular determinants for functional differences between alanine-serine-cysteine transporter 1 and other glutamate transporter family members.

Scopelliti AJ, Ryan RM, Vandenberg RJ.

J Biol Chem. 2013 Mar 22;288(12):8250-7. doi: 10.1074/jbc.M112.441022. Epub 2013 Feb 7.

4.

Differentiation of substrate and nonsubstrate inhibitors of the high-affinity, sodium-dependent glutamate transporters.

Koch HP, Kavanaugh MP, Esslinger CS, Zerangue N, Humphrey JM, Amara SG, Chamberlin AR, Bridges RJ.

Mol Pharmacol. 1999 Dec;56(6):1095-104.

5.
6.

K+ amino acid transporter KAAT1 mutant Y147F has increased transport activity and altered substrate selectivity.

Liu Z, Stevens BR, Feldman DH, Hediger MA, Harvey WR.

J Exp Biol. 2003 Jan;206(Pt 2):245-54.

7.

Hetero-oligomerization of neuronal glutamate transporters.

Nothmann D, Leinenweber A, Torres-Salazar D, Kovermann P, Hotzy J, Gameiro A, Grewer C, Fahlke C.

J Biol Chem. 2011 Feb 4;286(5):3935-43. doi: 10.1074/jbc.M110.187492. Epub 2010 Dec 2.

8.
9.

The equivalent of a thallium binding residue from an archeal homolog controls cation interactions in brain glutamate transporters.

Teichman S, Qu S, Kanner BI.

Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14297-302. doi: 10.1073/pnas.0904625106. Epub 2009 Aug 11.

10.

Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria.

Bailey CG, Ryan RM, Thoeng AD, Ng C, King K, Vanslambrouck JM, Auray-Blais C, Vandenberg RJ, Bröer S, Rasko JE.

J Clin Invest. 2011 Jan;121(1):446-53. doi: 10.1172/JCI44474. Epub 2010 Dec 1.

11.

Neuronal glutamate transporters vary in substrate transport rate but not in unitary anion channel conductance.

Torres-Salazar D, Fahlke C.

J Biol Chem. 2007 Nov 30;282(48):34719-26. Epub 2007 Oct 1.

12.

Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter.

Utsunomiya-Tate N, Endou H, Kanai Y.

J Biol Chem. 1996 Jun 21;271(25):14883-90.

13.

Molecular characteristics of mammalian and insect amino acid transporters: implications for amino acid homeostasis.

Castagna M, Shayakul C, Trotti D, Sacchi VF, Harvey WR, Hediger MA.

J Exp Biol. 1997 Jan;200(Pt 2):269-86. Review.

14.

Dicarboxylate transport by rhizobia.

Yurgel SN, Kahn ML.

FEMS Microbiol Rev. 2004 Oct;28(4):489-501. Review.

15.

Structure, function, and genomic organization of human Na(+)-dependent high-affinity dicarboxylate transporter.

Wang H, Fei YJ, Kekuda R, Yang-Feng TL, Devoe LD, Leibach FH, Prasad PD, Ganapathy V.

Am J Physiol Cell Physiol. 2000 May;278(5):C1019-30.

16.
17.

Klotho sensitivity of the neuronal excitatory amino acid transporters EAAT3 and EAAT4.

Almilaji A, Munoz C, Pakladok T, Alesutan I, Feger M, Föller M, Lang UE, Shumilina E, Lang F.

PLoS One. 2013 Jul 29;8(7):e70988. doi: 10.1371/journal.pone.0070988. Print 2013.

19.
20.

Functional characterization of a glutamate/aspartate transporter from the mosquito Aedes aegypti.

Umesh A, Cohen BN, Ross LS, Gill SS.

J Exp Biol. 2003 Jul;206(Pt 13):2241-55.

Items per page

Supplemental Content

Write to the Help Desk