Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis.

Vanholme R, Cesarino I, Rataj K, Xiao Y, Sundin L, Goeminne G, Kim H, Cross J, Morreel K, Araujo P, Welsh L, Haustraete J, McClellan C, Vanholme B, Ralph J, Simpson GG, Halpin C, Boerjan W.

Science. 2013 Sep 6;341(6150):1103-6. doi: 10.1126/science.1241602. Epub 2013 Aug 15.

2.

An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula.

Ha CM, Escamilla-Trevino L, Yarce JC, Kim H, Ralph J, Chen F, Dixon RA.

Plant J. 2016 Jun;86(5):363-75. doi: 10.1111/tpj.13177.

3.

Improving total saccharification yield of Arabidopsis plants by vessel-specific complementation of caffeoyl shikimate esterase (cse) mutants.

Vargas L, Cesarino I, Vanholme R, Voorend W, de Lyra Soriano Saleme M, Morreel K, Boerjan W.

Biotechnol Biofuels. 2016 Jul 7;9:139. doi: 10.1186/s13068-016-0551-9. eCollection 2016.

4.

Silencing CAFFEOYL SHIKIMATE ESTERASE affects lignification and improves saccharification.

Saleme MLS, Cesarino I, Vargas L, Kim H, Vanholme R, Goeminne G, Van Acker R, Fonseca FCA, Pallidis A, Voorend W, Nicomedes J, Padmakshan D, Van Doorsseleare J, Ralph J, Boerjan WA.

Plant Physiol. 2017 Sep 6. pii: pp.00920.2017. doi: 10.1104/pp.17.00920. [Epub ahead of print]

5.

Exploiting the Substrate Promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to Reduce Lignin.

Eudes A, Pereira JH, Yogiswara S, Wang G, Teixeira Benites V, Baidoo EE, Lee TS, Adams PD, Keasling JD, Loqué D.

Plant Cell Physiol. 2016 Mar;57(3):568-79. doi: 10.1093/pcp/pcw016. Epub 2016 Feb 8.

6.

A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis.

Vanholme R, Storme V, Vanholme B, Sundin L, Christensen JH, Goeminne G, Halpin C, Rohde A, Morreel K, Boerjan W.

Plant Cell. 2012 Sep;24(9):3506-29. doi: 10.1105/tpc.112.102574. Epub 2012 Sep 25.

7.

Early lignin pathway enzymes and routes to chlorogenic acid in switchgrass (Panicum virgatum L.).

Escamilla-Treviño LL, Shen H, Hernandez T, Yin Y, Xu Y, Dixon RA.

Plant Mol Biol. 2014 Mar;84(4-5):565-76. doi: 10.1007/s11103-013-0152-y. Epub 2013 Nov 5.

PMID:
24190737
8.

Mutation of the inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 alters lignin composition and improves saccharification.

Sundin L, Vanholme R, Geerinck J, Goeminne G, Höfer R, Kim H, Ralph J, Boerjan W.

Plant Physiol. 2014 Dec;166(4):1956-71. doi: 10.1104/pp.114.245548. Epub 2014 Oct 14.

10.

Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency.

Eudes A, Sathitsuksanoh N, Baidoo EE, George A, Liang Y, Yang F, Singh S, Keasling JD, Simmons BA, Loqué D.

Plant Biotechnol J. 2015 Dec;13(9):1241-50. doi: 10.1111/pbi.12310. Epub 2015 Jan 13.

11.

Identification of an Arabidopsis fatty alcohol:caffeoyl-Coenzyme A acyltransferase required for the synthesis of alkyl hydroxycinnamates in root waxes.

Kosma DK, Molina I, Ohlrogge JB, Pollard M.

Plant Physiol. 2012 Sep;160(1):237-48. doi: 10.1104/pp.112.201822. Epub 2012 Jul 13.

12.

Expression of a bacterial feedback-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism.

Tzin V, Malitsky S, Ben Zvi MM, Bedair M, Sumner L, Aharoni A, Galili G.

New Phytol. 2012 Apr;194(2):430-9. doi: 10.1111/j.1469-8137.2012.04052.x. Epub 2012 Feb 1.

13.

CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway.

Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D.

J Biol Chem. 2001 Sep 28;276(39):36566-74. Epub 2001 Jun 27.

14.

The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids.

Li X, Bonawitz ND, Weng JK, Chapple C.

Plant Cell. 2010 May;22(5):1620-32. doi: 10.1105/tpc.110.074161. Epub 2010 May 28.

15.

Metabolic engineering of 2-phenylethanol pathway producing fragrance chemical and reducing lignin in Arabidopsis.

Qi G, Wang D, Yu L, Tang X, Chai G, He G, Ma W, Li S, Kong Y, Fu C, Zhou G.

Plant Cell Rep. 2015 Aug;34(8):1331-42. doi: 10.1007/s00299-015-1790-0. Epub 2015 Apr 21.

PMID:
25895734
16.

Over-expression of F5H in COMT-deficient Arabidopsis leads to enrichment of an unusual lignin and disruption of pollen wall formation.

Weng JK, Mo H, Chapple C.

Plant J. 2010 Dec;64(6):898-911. doi: 10.1111/j.1365-313X.2010.04391.x. Epub 2010 Nov 4.

17.

Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis.

Vanholme R, Ralph J, Akiyama T, Lu F, Pazo JR, Kim H, Christensen JH, Van Reusel B, Storme V, De Rycke R, Rohde A, Morreel K, Boerjan W.

Plant J. 2010 Dec;64(6):885-97. doi: 10.1111/j.1365-313X.2010.04353.x. Epub 2010 Oct 15.

18.

Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems.

Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Le Bris P, Borrega N, Hervé J, Blondet E, Balzergue S, Lapierre C, Jouanin L.

Plant Cell. 2011 Mar;23(3):1124-37. doi: 10.1105/tpc.110.082792. Epub 2011 Mar 29.

19.

Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth.

Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M.

Plant Cell. 2007 Jan;19(1):148-62. Epub 2007 Jan 19.

Supplemental Content

Support Center