Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

Ibuprofen-loaded poly(trimethylene carbonate-co-ε-caprolactone) electrospun fibres for nerve regeneration.

Pires LR, Guarino V, Oliveira MJ, Ribeiro CC, Barbosa MA, Ambrosio L, Pêgo AP.

J Tissue Eng Regen Med. 2016 Mar;10(3):E154-66. doi: 10.1002/term.1792. Epub 2013 Aug 16.

PMID:
23950030
2.

Melt electrospinning vs. solution electrospinning: A comparative study of drug-loaded poly (ε-caprolactone) fibres.

Lian H, Meng Z.

Mater Sci Eng C Mater Biol Appl. 2017 May 1;74:117-123. doi: 10.1016/j.msec.2017.02.024. Epub 2017 Feb 7.

PMID:
28254275
3.

Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.

Stefani I, Cooper-White JJ.

Acta Biomater. 2016 May;36:231-40. doi: 10.1016/j.actbio.2016.03.013. Epub 2016 Mar 8.

PMID:
26969522
4.

The role of the surface on microglia function: implications for central nervous system tissue engineering.

Pires LR, Rocha DN, Ambrosio L, Pêgo AP.

J R Soc Interface. 2015 Feb 6;12(103). pii: 20141224. doi: 10.1098/rsif.2014.1224.

5.

Full factorial design optimization of anti-inflammatory drug release by PCL-PEG-PCL microspheres.

Azouz L, Dahmoune F, Rezgui F, G'Sell C.

Mater Sci Eng C Mater Biol Appl. 2016 Jan 1;58:412-9. doi: 10.1016/j.msec.2015.08.058. Epub 2015 Sep 3.

PMID:
26478328
6.

Fabrication and characterization of vitamin B5 loaded poly (l-lactide-co-caprolactone)/silk fiber aligned electrospun nanofibers for schwann cell proliferation.

Bhutto MA, Wu T, Sun B, Ei-Hamshary H, Al-Deyab SS, Mo X.

Colloids Surf B Biointerfaces. 2016 Aug 1;144:108-17. doi: 10.1016/j.colsurfb.2016.04.013. Epub 2016 Apr 7.

PMID:
27085042
7.

Ofloxacin Loaded Electrospun Fibers for Ocular Drug Delivery: Effect of Formulation Variables on Fiber Morphology and Drug Release.

Karataş A, Algan AH, Pekel-Bayramgil N, Turhan F, Altanlar N.

Curr Drug Deliv. 2016;13(3):433-43.

PMID:
26521656
8.

Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering.

Kijeńska E, Prabhakaran MP, Swieszkowski W, Kurzydlowski KJ, Ramakrishna S.

J Biomed Mater Res B Appl Biomater. 2012 May;100(4):1093-102. doi: 10.1002/jbm.b.32676. Epub 2012 Mar 21.

PMID:
22438340
9.

In vitro and in vivo safety evaluation of biodegradable self-assembled monomethyl poly (ethylene glycol)-poly (ε-caprolactone)-poly (trimethylene carbonate) micelles.

Yang X, Cao D, Wang N, Sun L, Li L, Nie S, Wu Q, Liu X, Yi C, Gong C.

J Pharm Sci. 2014 Jan;103(1):305-13. doi: 10.1002/jps.23800. Epub 2013 Nov 26.

PMID:
24282070
10.

Study of a (trimethylenecarbonate-co-epsilon-caprolactone) polymer--part 2: in vitro cytocompatibility analysis and in vivo ED1 cell response of a new nerve guide.

Fabre T, Schappacher M, Bareille R, Dupuy B, Soum A, Bertrand-Barat J, Baquey C.

Biomaterials. 2001 Nov;22(22):2951-8.

PMID:
11575469
11.

In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response.

Pêgo AP, Van Luyn MJ, Brouwer LA, van Wachem PB, Poot AA, Grijpma DW, Feijen J.

J Biomed Mater Res A. 2003 Dec 1;67(3):1044-54.

PMID:
14613255
12.

Preparation and characterization of multiactive electrospun fibers: poly-ɛ-carpolactone fibers loaded with hydroxyapatite and selected NSAIDs.

Karavasili C, Bouropoulos N, Kontopoulou I, Smith A, van der Merwe SM, Rehman IU, Ahmad Z, Fatouros DG.

J Biomed Mater Res A. 2014 Aug;102(8):2583-9. doi: 10.1002/jbm.a.34931. Epub 2013 Sep 2.

PMID:
24000194
13.

Electrospun shikonin-loaded PCL/PTMC composite fiber mats with potential biomedical applications.

Han J, Chen TX, Branford-White CJ, Zhu LM.

Int J Pharm. 2009 Dec 1;382(1-2):215-21. doi: 10.1016/j.ijpharm.2009.07.027. Epub 2009 Aug 4.

PMID:
19660536
14.

Efficient induction of antimicrobial activity with vancomycin nanoparticle-loaded poly(trimethylene carbonate) localized drug delivery system.

Zhang Y, Liang RJ, Xu JJ, Shen LF, Gao JQ, Wang XP, Wang NN, Shou D, Hu Y.

Int J Nanomedicine. 2017 Feb 10;12:1201-1214. doi: 10.2147/IJN.S127715. eCollection 2017.

15.

Osteoblast behaviour on in situ photopolymerizable three-dimensional scaffolds based on D, L-lactide, epsilon-caprolactone and trimethylene carbonate.

Declercq HA, Cornelissen MJ, Gorskiy TL, Schacht EH.

J Mater Sci Mater Med. 2006 Feb;17(2):113-22.

PMID:
16502243
17.

Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.

Tetteh G, Khan AS, Delaine-Smith RM, Reilly GC, Rehman IU.

J Mech Behav Biomed Mater. 2014 Nov;39:95-110. doi: 10.1016/j.jmbbm.2014.06.019. Epub 2014 Jul 18.

18.

Acceleration of dermal wound healing by using electrospun curcumin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous mats.

Fu SZ, Meng XH, Fan J, Yang LL, Wen QL, Ye SJ, Lin S, Wang BQ, Chen LL, Wu JB, Chen Y, Fan JM, Li Z.

J Biomed Mater Res B Appl Biomater. 2014 Apr;102(3):533-42. doi: 10.1002/jbm.b.33032. Epub 2013 Sep 20.

PMID:
24115465
19.

Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.

Tong HW, Wang M, Lu WW.

J Biomater Sci Polym Ed. 2012;23(6):779-806. doi: 10.1163/092050611X560708.

PMID:
21418747
20.

Poly(lactide-co-trimethylene carbonate) and polylactide/polytrimethylene carbonate blown films.

Li H, Chang J, Qin Y, Wu Y, Yuan M, Zhang Y.

Int J Mol Sci. 2014 Feb 14;15(2):2608-21. doi: 10.3390/ijms15022608.

Supplemental Content

Support Center