Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Synthesis of photoresponsive dual NIR two-photon absorptive [60]fullerene triads and tetrads.

Jeon S, Wang M, Tan LS, Cooper T, Hamblin MR, Chiang LY.

Molecules. 2013 Aug 12;18(8):9603-22. doi: 10.3390/molecules18089603.

2.

Linear and Nonlinear Optical Properties of Photoresponsive [60]Fullerene Hybrid Triads and Tetrads with Dual NIR Two-Photon Absorption Characteristics.

Jeon S, Haley J, Flikkema J, Nalla V, Wang M, Sfeir M, Tan LS, Cooper T, Ji W, Hamblin MR, Chiang LY.

J Phys Chem C Nanomater Interfaces. 2013 Aug 20;117(33):17186-17195.

3.

Broadband Two-Photon Absorption Characteristics of Highly Photostable Fluorenyl-Dicyanoethylenylated [60]Fullerene Dyads.

Jeon S, Wang M, Ji W, Tan LS, Cooper T, Chiang LY.

Molecules. 2016 May 14;21(5). pii: E647. doi: 10.3390/molecules21050647.

4.

Hybrid photoactive fullerene derivative-ruboxyl nanostructures for photodynamic therapy.

Kotelnikov AI, Rybkin AY, Khakina EA, Kornev AB, Barinov AV, Goryachev NS, Ivanchikhina AV, Peregudov AS, Martynenko VM, Troshin PA.

Org Biomol Chem. 2013 Jul 14;11(26):4397-404. doi: 10.1039/c3ob40136g. Epub 2013 May 28.

PMID:
23712714
5.

Synthesis and characterization of highly photoresponsive fullerenyl dyads with a close chromophore antenna-C(60) contact and effective photodynamic potential.

Chiang LY, Padmawar PA, Rogers-Haley JE, So G, Canteenwala T, Thota S, Tan LS, Pritzker K, Huang YY, Sharma SK, Kurup DB, Hamblin MR, Wilson B, Urbas A.

J Mater Chem. 2010 Jan 1;20(25):5280-5293.

6.

Large Femtosecond Two-Photon Absorption Cross-Sections of Fullerosome Vesicle Nanostructures Derived from Highly Photoresponsive Amphiphilic C(60)-Light-Harvesting Fluorene Dyad.

Wang M, Nalla V, Jeon S, Mamidala V, Ji W, Tan LS, Cooper T, Chiang LY.

J Phys Chem C Nanomater Interfaces. 2011 Sep 29;115(38):18552-18559.

7.

Intermolecular interaction-controlled tuning of the two-photon absorption of fullerene bound in a buckycatcher.

Chakrabarti S, Ruud K.

J Phys Chem A. 2009 May 14;113(19):5485-8. doi: 10.1021/jp902071j.

PMID:
19419222
8.

Simultaneous two-photon excitation of photofrin in relation to photodynamic therapy.

Karotki A, Khurana M, Lepock JR, Wilson BC.

Photochem Photobiol. 2006 Mar-Apr;82(2):443-52.

PMID:
16613497
9.

Fullerene-porphyrin nanostructures in photodynamic therapy.

Constantin C, Neagu M, Ion RM, Gherghiceanu M, Stavaru C.

Nanomedicine (Lond). 2010 Feb;5(2):307-17. doi: 10.2217/nnm.09.111. Review.

PMID:
20148640
10.

Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density.

Wang J, Zhang Z, Zha S, Zhu Y, Wu P, Ehrenberg B, Chen JY.

Biomaterials. 2014 Nov;35(34):9372-81. doi: 10.1016/j.biomaterials.2014.07.063. Epub 2014 Aug 15.

PMID:
25132603
11.

Simultaneous two-photon activation of type-I photodynamic therapy agents.

Fisher WG, Partridge WP Jr, Dees C, Wachter EA.

Photochem Photobiol. 1997 Aug;66(2):141-55.

PMID:
9277135
12.

Synthesis, spectroscopic properties and photodynamic activity of porphyrin-fullerene C60 dyads with application in the photodynamic inactivation of Staphylococcus aureus.

Ballatore MB, Spesia MB, Milanesio ME, Durantini EN.

Eur J Med Chem. 2014 Aug 18;83:685-94. doi: 10.1016/j.ejmech.2014.06.077. Epub 2014 Jul 1.

PMID:
25010938
13.

Two-photon absorption-molecular structure investigation using a porphycene chromophore with potential in photodynamic therapy.

Bergendahl LT, Paterson MJ.

J Phys Chem B. 2012 Oct 4;116(39):11818-28. doi: 10.1021/jp305063e. Epub 2012 Sep 21.

PMID:
22946473
14.

Photodynamic Therapy with Blended Conducting Polymer/Fullerene Nanoparticle Photosensitizers.

Doshi M, Gesquiere AJ.

J Vis Exp. 2015 Oct 28;(105):e53038. doi: 10.3791/53038.

PMID:
26556528
15.

Designing multi-branched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window.

Vijayaraghavan P, Liu CH, Vankayala R, Chiang CS, Hwang KC.

Adv Mater. 2014 Oct 22;26(39):6689-95. doi: 10.1002/adma.201400703. Epub 2014 Jul 14.

PMID:
25042520
16.

Hybrid structures of polycationic aluminum phthalocyanines and quantum dots.

Maksimov EG, Gvozdev DA, Strakhovskaya MG, Paschenko VZ.

Biochemistry (Mosc). 2015 Mar;80(3):323-31. doi: 10.1134/S0006297915030074.

PMID:
25761686
17.

Synthesis of novel carboranylchlorins with dual application in boron neutron capture therapy (BNCT) and photodynamic therapy (PDT).

Luguya R, Fronczek FR, Smith KM, Vicente MG.

Appl Radiat Isot. 2004 Nov;61(5):1117-23.

PMID:
15308202
18.

Experimental and theoretical study of two-photon absorption in nitrofuran derivatives: Promising compounds for photochemotherapy.

De Boni L, Correa DS, Silva DL, Gonçalves PJ, Zilio SC, Parra GG, Borissevitch IE, Canuto S, Mendonca CR.

J Chem Phys. 2011 Jan 7;134(1):014509. doi: 10.1063/1.3514911.

PMID:
21219009
19.

Synthesis of decacationic [60]fullerene decaiodides giving photoinduced production of superoxide radicals and effective PDT-mediation on antimicrobial photoinactivation.

Wang M, Maragani S, Huang L, Jeon S, Canteenwala T, Hamblin MR, Chiang LY.

Eur J Med Chem. 2013 May;63:170-84. doi: 10.1016/j.ejmech.2013.01.052. Epub 2013 Feb 17.

20.

Extensive Penetration of Evaporated Electrode Metals into Fullerene Films: Intercalated Metal Nanostructures and Influence on Device Architecture.

Zhang G, Hawks SA, Ngo C, Schelhas LT, Scholes DT, Kang H, Aguirre JC, Tolbert SH, Schwartz BJ.

ACS Appl Mater Interfaces. 2015 Nov 18;7(45):25247-58. doi: 10.1021/acsami.5b06944. Epub 2015 Nov 9.

PMID:
26488157

Supplemental Content

Support Center