Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Pronounced induction of endoplasmic reticulum stress and tumor suppression by surfactant-free poly(lactic-co-glycolic acid) nanoparticles via modulation of the PI3K signaling pathway.

Hou CC, Tsai TL, Su WP, Hsieh HP, Yeh CS, Shieh DB, Su WC.

Int J Nanomedicine. 2013;8:2689-707. doi: 10.2147/IJN.S47208. Epub 2013 Jul 25.

2.

Hyaluronic acid-decorated poly(lactic-co-glycolic acid) nanoparticles for combined delivery of docetaxel and tanespimycin.

Pradhan R, Ramasamy T, Choi JY, Kim JH, Poudel BK, Tak JW, Nukolova N, Choi HG, Yong CS, Kim JO.

Carbohydr Polym. 2015 Jun 5;123:313-23. doi: 10.1016/j.carbpol.2015.01.064. Epub 2015 Feb 7.

PMID:
25843864
3.

SN38 polymeric nanoparticles: in vitro cytotoxicity and in vivo antitumor efficacy in xenograft balb/c model with breast cancer versus irinotecan.

Sepehri N, Rouhani H, Tavassolian F, Montazeri H, Khoshayand MR, Ghahremani MH, Ostad SN, Atyabi F, Dinarvand R.

Int J Pharm. 2014 Aug 25;471(1-2):485-97. doi: 10.1016/j.ijpharm.2014.05.046. Epub 2014 May 29.

PMID:
24879937
4.

Development of a poly(d,l-lactic-co-glycolic acid) nanoparticle formulation of STAT3 inhibitor JSI-124: implication for cancer immunotherapy.

Molavi O, Mahmud A, Hamdy S, Hung RW, Lai R, Samuel J, Lavasanifar A.

Mol Pharm. 2010 Apr 5;7(2):364-74. doi: 10.1021/mp900145g.

PMID:
20030320
5.

Photoprotective efficiency of PLGA-curcumin nanoparticles versus curcumin through the involvement of ERK/AKT pathway under ambient UV-R exposure in HaCaT cell line.

Chopra D, Ray L, Dwivedi A, Tiwari SK, Singh J, Singh KP, Kushwaha HN, Jahan S, Pandey A, Gupta SK, Chaturvedi RK, Pant AB, Ray RS, Gupta KC.

Biomaterials. 2016 Apr;84:25-41. doi: 10.1016/j.biomaterials.2016.01.018. Epub 2016 Jan 11.

PMID:
26803409
6.

Novel Nano-Therapeutic Approach Actively Targets Human Ovarian Cancer Stem Cells after Xenograft into Nude Mice.

Abou-ElNaga A, Mutawa G, El-Sherbiny IM, Abd-ElGhaffar H, Allam AA, Ajarem J, Mousa SA.

Int J Mol Sci. 2017 Apr 12;18(4). pii: E813. doi: 10.3390/ijms18040813.

7.

Multifunctional Nanoparticles Loading with Docetaxel and GDC0941 for Reversing Multidrug Resistance Mediated by PI3K/Akt Signal Pathway.

Wang Y, Li J, Chen JJ, Gao X, Huang Z, Shen Q.

Mol Pharm. 2017 Apr 3;14(4):1120-1132. doi: 10.1021/acs.molpharmaceut.6b01045. Epub 2017 Mar 22.

PMID:
28291364
8.

Surface modification of PLGA nanoparticles with biotinylated chitosan for the sustained in vitro release and the enhanced cytotoxicity of epirubicin.

Chen H, Xie LQ, Qin J, Jia Y, Cai X, Nan W, Yang W, Lv F, Zhang QQ.

Colloids Surf B Biointerfaces. 2016 Feb 1;138:1-9. doi: 10.1016/j.colsurfb.2015.11.033. Epub 2015 Nov 28.

PMID:
26638176
9.

[Effects of PD98059 and LY294002 on subcutaneous xenograft of human endometrial carcinoma in nude mice].

Guo RX, Zhang RF, Wang XY, Shi HR, Qiao YH.

Zhonghua Fu Chan Ke Za Zhi. 2011 Jun;46(6):446-52. Chinese.

PMID:
21781587
10.

Tetraiodothyroacetic acid-conjugated PLGA nanoparticles: a nanomedicine approach to treat drug-resistant breast cancer.

Bharali DJ, Yalcin M, Davis PJ, Mousa SA.

Nanomedicine (Lond). 2013 Dec;8(12):1943-54. doi: 10.2217/nnm.12.200. Epub 2013 Feb 28.

11.

Endoplasmic reticulum stress sensitizes human esophageal cancer cell to radiation.

Pang XL, He G, Liu YB, Wang Y, Zhang B.

World J Gastroenterol. 2013 Mar 21;19(11):1736-48. doi: 10.3748/wjg.v19.i11.1736.

12.

In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles.

Shi L, Wang X, Zhao F, Luan H, Tu Q, Huang Z, Wang H, Wang H.

Int J Nanomedicine. 2013;8:2669-76. doi: 10.2147/IJN.S45821. Epub 2013 Jul 24.

13.

Preparation, characterization, and in vivo study of rhein-loaded poly(lactic-co-glycolic acid) nanoparticles for oral delivery.

Yuan Z, Gu X.

Drug Des Devel Ther. 2015 Apr 21;9:2301-9. doi: 10.2147/DDDT.S81320. eCollection 2015.

14.

Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-aspartic acid-co-lactic acid)/DPPE co-polymer nanoparticles.

Han S, Liu Y, Nie X, Xu Q, Jiao F, Li W, Zhao Y, Wu Y, Chen C.

Small. 2012 May 21;8(10):1596-606. doi: 10.1002/smll.201102280. Epub 2012 Mar 13.

PMID:
22411637
15.

Preparation, characterization, and anticancer efficacy of evodiamine-loaded PLGA nanoparticles.

Zou L, Chen F, Bao J, Wang S, Wang L, Chen M, He C, Wang Y.

Drug Deliv. 2016;23(3):908-16. doi: 10.3109/10717544.2014.920936. Epub 2014 Jun 6.

PMID:
24904975
16.

Effects of surfactants on the properties of PLGA nanoparticles.

Menon JU, Kona S, Wadajkar AS, Desai F, Vadla A, Nguyen KT.

J Biomed Mater Res A. 2012 Aug;100(8):1998-2005. doi: 10.1002/jbm.a.34040. Epub 2012 May 5.

PMID:
22566409
17.

Long-acting inhalable chitosan-coated poly(lactic-co-glycolic acid) nanoparticles containing hydrophobically modified exendin-4 for treating type 2 diabetes.

Lee C, Choi JS, Kim I, Oh KT, Lee ES, Park ES, Lee KC, Youn YS.

Int J Nanomedicine. 2013;8:2975-83. doi: 10.2147/IJN.S48197. Epub 2013 Aug 9.

18.

Ifosfamide-loaded poly (lactic-co-glycolic acid) PLGA-dextran polymeric nanoparticles to improve the antitumor efficacy in Osteosarcoma.

Chen B, Yang JZ, Wang LF, Zhang YJ, Lin XJ.

BMC Cancer. 2015 Oct 21;15:752. doi: 10.1186/s12885-015-1735-6.

19.

Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer.

Yallapu MM, Khan S, Maher DM, Ebeling MC, Sundram V, Chauhan N, Ganju A, Balakrishna S, Gupta BK, Zafar N, Jaggi M, Chauhan SC.

Biomaterials. 2014 Oct;35(30):8635-48. doi: 10.1016/j.biomaterials.2014.06.040. Epub 2014 Jul 12.

20.

Development of poly(lactic-co-glycolic) acid nanoparticles-embedded hyaluronic acid-ceramide-based nanostructure for tumor-targeted drug delivery.

Park JH, Lee JY, Termsarasab U, Yoon IS, Ko SH, Shim JS, Cho HJ, Kim DD.

Int J Pharm. 2014 Oct 1;473(1-2):426-33. doi: 10.1016/j.ijpharm.2014.07.038. Epub 2014 Jul 28.

PMID:
25079433

Supplemental Content

Support Center