Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Genetic and nongenetic determinants of cell growth variation assessed by high-throughput microscopy.

Ziv N, Siegal ML, Gresham D.

Mol Biol Evol. 2013 Dec;30(12):2568-78. doi: 10.1093/molbev/mst138. Epub 2013 Aug 11.

2.

Resolving the Complex Genetic Basis of Phenotypic Variation and Variability of Cellular Growth.

Ziv N, Shuster BM, Siegal ML, Gresham D.

Genetics. 2017 Jul;206(3):1645-1657. doi: 10.1534/genetics.116.195180. Epub 2017 May 11.

3.

Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant.

Levy SF, Ziv N, Siegal ML.

PLoS Biol. 2012;10(5):e1001325. doi: 10.1371/journal.pbio.1001325. Epub 2012 May 8.

4.

The Crabtree Effect Shapes the Saccharomyces cerevisiae Lag Phase during the Switch between Different Carbon Sources.

Perez-Samper G, Cerulus B, Jariani A, Vermeersch L, Barrajón Simancas N, Bisschops MMM, van den Brink J, Solis-Escalante D, Gallone B, De Maeyer D, van Bael E, Wenseleers T, Michiels J, Marchal K, Daran-Lapujade P, Verstrepen KJ.

MBio. 2018 Oct 30;9(5). pii: e01331-18. doi: 10.1128/mBio.01331-18.

5.

Different levels of catabolite repression optimize growth in stable and variable environments.

New AM, Cerulus B, Govers SK, Perez-Samper G, Zhu B, Boogmans S, Xavier JB, Verstrepen KJ.

PLoS Biol. 2014 Jan;12(1):e1001764. doi: 10.1371/journal.pbio.1001764. Epub 2014 Jan 14.

7.

SFP1 is involved in cell size modulation in respiro-fermentative growth conditions.

Cipollina C, Alberghina L, Porro D, Vai M.

Yeast. 2005 Apr 15;22(5):385-99.

9.

HXT5 expression is determined by growth rates in Saccharomyces cerevisiae.

Verwaal R, Paalman JW, Hogenkamp A, Verkleij AJ, Verrips CT, Boonstra J.

Yeast. 2002 Sep 15;19(12):1029-38.

10.

Nonlinear fitness consequences of variation in expression level of a eukaryotic gene.

Rest JS, Morales CM, Waldron JB, Opulente DA, Fisher J, Moon S, Bullaughey K, Carey LB, Dedousis D.

Mol Biol Evol. 2013 Feb;30(2):448-56. doi: 10.1093/molbev/mss248. Epub 2012 Oct 27.

11.

Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae.

Heyland J, Fu J, Blank LM.

Microbiology. 2009 Dec;155(Pt 12):3827-37. doi: 10.1099/mic.0.030213-0. Epub 2009 Aug 14.

PMID:
19684065
12.

Deciphering the Genic Basis of Yeast Fitness Variation by Simultaneous Forward and Reverse Genetics.

Maclean CJ, Metzger BPH, Yang JR, Ho WC, Moyers B, Zhang J.

Mol Biol Evol. 2017 Oct 1;34(10):2486-2502. doi: 10.1093/molbev/msx151.

PMID:
28472365
13.

Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.

Mira NP, Palma M, Guerreiro JF, Sá-Correia I.

Microb Cell Fact. 2010 Oct 25;9:79. doi: 10.1186/1475-2859-9-79.

14.
15.

Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae.

Watanabe D, Hashimoto N, Mizuno M, Zhou Y, Akao T, Shimoi H.

Biosci Biotechnol Biochem. 2013;77(11):2255-62. Epub 2013 Nov 7.

16.

Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity.

Flikweert MT, Kuyper M, van Maris AJ, Kötter P, van Dijken JP, Pronk JT.

Biotechnol Bioeng. 1999;66(1):42-50.

PMID:
10556793
17.

Concerted evolution of life stage performances signals recent selection on yeast nitrogen use.

Ibstedt S, Stenberg S, Bagés S, Gjuvsland AB, Salinas F, Kourtchenko O, Samy JK, Blomberg A, Omholt SW, Liti G, Beltran G, Warringer J.

Mol Biol Evol. 2015 Jan;32(1):153-61. doi: 10.1093/molbev/msu285. Epub 2014 Oct 27.

PMID:
25349282
18.

Mutations of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in Saccharomyces cerevisiae.

Kim NR, Yang J, Kwon H, An J, Choi W, Kim W.

Appl Microbiol Biotechnol. 2013 Sep;97(18):8227-38. doi: 10.1007/s00253-013-4985-8. Epub 2013 May 25.

PMID:
23709042
19.

Effect of hxk2 deletion and HAP4 overexpression on fermentative capacity in Saccharomyces cerevisiae.

Schuurmans JM, Rossell SL, van Tuijl A, Bakker BM, Hellingwerf KJ, Teixeira de Mattos MJ.

FEMS Yeast Res. 2008 Mar;8(2):195-203. doi: 10.1111/j.1567-1364.2007.00319.x. Epub 2007 Dec 20.

20.

Effects of proteinase A on cultivation and viability characteristics of industrial Saccharomyces cerevisiae WZ65.

Zhang HB, Zhang HF, Chen QH, Ruan H, Fu ML, He GQ.

J Zhejiang Univ Sci B. 2009 Oct;10(10):769-76. doi: 10.1631/jzus.B0920057.

Supplemental Content

Support Center