Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 206

1.

Photosynthetic response of early and late leaves of white birch (Betula platyphylla var. japonica) grown under free-air ozone exposure.

Hoshika Y, Watanabe M, Inada N, Mao Q, Koike T.

Environ Pollut. 2013 Nov;182:242-7. doi: 10.1016/j.envpol.2013.07.033. Epub 2013 Aug 9.

PMID:
23938447
3.

Leaf traits and photosynthetic responses of Betula pendula saplings to a range of ground-level ozone concentrations at a range of nitrogen loads.

Harmens H, Hayes F, Sharps K, Mills G, Calatayud V.

J Plant Physiol. 2017 Apr;211:42-52. doi: 10.1016/j.jplph.2017.01.002. Epub 2017 Jan 16.

PMID:
28152417
4.

Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold's beech (Fagus crenata).

Hoshika Y, Watanabe M, Inada N, Koike T.

Ann Bot. 2013 Oct;112(6):1149-58. doi: 10.1093/aob/mct166. Epub 2013 Jul 31.

5.

Photosynthetic responses of Monarch birch seedlings to differing timings of free air ozone fumigation.

Watanabe M, Hoshika Y, Koike T.

J Plant Res. 2014 Mar;127(2):339-45. doi: 10.1007/s10265-013-0622-y. Epub 2013 Dec 24.

PMID:
24366364
6.
7.

Effects of ozone impact on the gas exchange and chlorophyll fluorescence of juvenile birch stems (Betula pendula Roth.).

Wittmann C, Matyssek R, Pfanz H, Humar M.

Environ Pollut. 2007 Nov;150(2):258-66. Epub 2007 Mar 19.

PMID:
17374426
8.

Elevated ozone negatively affects photosynthesis of current-year leaves but not previous-year leaves in evergreen Cyclobalanopsis glauca seedlings.

Zhang W, Feng Z, Wang X, Niu J.

Environ Pollut. 2014 Jan;184:676-81. doi: 10.1016/j.envpol.2013.04.036. Epub 2013 May 25.

PMID:
23714144
9.

Photosynthetic traits of Siebold's beech and oak saplings grown under free air ozone exposure in northern Japan.

Watanabe M, Hoshika Y, Inada N, Wang X, Mao Q, Koike T.

Environ Pollut. 2013 Mar;174:50-6. doi: 10.1016/j.envpol.2012.11.006. Epub 2012 Dec 14.

PMID:
23246746
10.
11.

Light compensation points in shade-grown seedlings of deciduous broadleaf tree species with different successional traits raised under elevated CO2.

Kitao M, Hida T, Eguchi N, Tobita H, Utsugi H, Uemura A, Kitaoka S, Koike T.

Plant Biol (Stuttg). 2016 Jan;18 Suppl 1:22-7. doi: 10.1111/plb.12400. Epub 2015 Oct 11.

PMID:
26404633
12.

Ozone alters the feeding behavior of the leaf beetle Agelastica coerulea (Coleoptera: Chrysomelidae) into leaves of Japanese white birch (Betula platyphylla var. japonica).

Agathokleous E, Sakikawa T, Abu ElEla SA, Mochizuki T, Nakamura M, Watanabe M, Kawamura K, Koike T.

Environ Sci Pollut Res Int. 2017 Jul;24(21):17577-17583. doi: 10.1007/s11356-017-9369-7. Epub 2017 Jun 8.

PMID:
28597386
13.

Exposure to moderate concentrations of tropospheric ozone impairs tree stomatal response to carbon dioxide.

Onandia G, Olsson AK, Barth S, King JS, Uddling J.

Environ Pollut. 2011 Oct;159(10):2350-4. doi: 10.1016/j.envpol.2011.06.001. Epub 2011 Jul 5.

PMID:
21733606
14.

Mesophyll conductance in leaves of Japanese white birch (Betula platyphylla var. japonica) seedlings grown under elevated CO2 concentration and low N availability.

Kitao M, Yazaki K, Kitaoka S, Fukatsu E, Tobita H, Komatsu M, Maruyama Y, Koike T.

Physiol Plant. 2015 Dec;155(4):435-45. doi: 10.1111/ppl.12335. Epub 2015 Mar 16.

PMID:
25690946
15.

Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera).

Lindroth RL, Kopper BJ, Parsons WF, Bockheim JG, Karnosky DF, Hendrey GR, Pregitzer KS, Isebrands JG, Sober J.

Environ Pollut. 2001;115(3):395-404.

PMID:
11789920
16.

Vertical profiles reveal impact of ozone and temperature on carbon assimilation of Betula pendula and Populus tremula.

Mäenpää M, Riikonen J, Kontunen-Soppela S, Rousi M, Oksanen E.

Tree Physiol. 2011 Aug;31(8):808-18. doi: 10.1093/treephys/tpr075. Epub 2011 Aug 18.

PMID:
21856655
17.

Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.

Uddling J, Teclaw RM, Pregitzer KS, Ellsworth DS.

Tree Physiol. 2009 Nov;29(11):1367-80. doi: 10.1093/treephys/tpp070. Epub 2009 Sep 22.

PMID:
19773339
18.

Photosynthetic downregulation in leaves of the Japanese white birch grown under elevated CO(2) concentration does not change their temperature-dependent susceptibility to photoinhibition.

Komatsu M, Tobita H, Watanabe M, Yazaki K, Koike T, Kitao M.

Physiol Plant. 2013 Feb;147(2):159-68. doi: 10.1111/j.1399-3054.2012.01651.x. Epub 2012 Jun 26.

PMID:
22607385
19.

Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile.

Koike T, Kitao M, Maruyama Y, Mori S, Lei TT.

Tree Physiol. 2001 Aug;21(12-13):951-8.

PMID:
11498342
20.

Ozone-induced stomatal sluggishness changes stomatal parameters of Jarvis-type model in white birch and deciduous oak.

Hoshika Y, Watanabe M, Carrari E, Paoletti E, Koike T.

Plant Biol (Stuttg). 2018 Jan;20(1):20-28. doi: 10.1111/plb.12632. Epub 2017 Oct 19.

PMID:
28941031

Supplemental Content

Support Center