Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Thermally induced shape modification of free-standing nanostructures for advanced functionalities.

Cui A, Li W, Shen TH, Yao Y, Fenton JC, Peng Y, Liu Z, Zhang J, Gu C.

Sci Rep. 2013;3:2429. doi: 10.1038/srep02429.

2.

Localized joule heating as a mask-free technique for the local synthesis of ZnO nanowires on silicon nanodevices.

Chen CC, Lin YS, Sang CH, Sheu JT.

Nano Lett. 2011 Nov 9;11(11):4736-41. doi: 10.1021/nl202539m. Epub 2011 Oct 25.

PMID:
22007768
3.

Nanowire transformation and annealing by Joule heating.

Hummelgård M, Zhang R, Carlberg T, Vengust D, Dvorsek D, Mihailovic D, Olin H.

Nanotechnology. 2010 Apr 23;21(16):165704. doi: 10.1088/0957-4484/21/16/165704. Epub 2010 Mar 30.

PMID:
20351407
4.

Single-crystal apatite nanowires sheathed in graphitic shells: synthesis, characterization, and application.

Jeong N, Cha M, Park YC, Lee KM, Lee JH, Park BC, Lee J.

ACS Nano. 2013 Jul 23;7(7):5711-23. doi: 10.1021/nn305767t. Epub 2013 Jun 17.

PMID:
23755838
5.

The growth and characterization of ZnO/ZnTe core-shell nanowires and the electrical properties of ZnO/ZnTe core-shell nanowire field effect transistor.

Chao HY, You SH, Lu JY, Cheng JH, Chang YH, Liang CT, Wu CT.

J Nanosci Nanotechnol. 2011 Mar;11(3):2042-6.

PMID:
21449346
6.

Epitaxial integration of nanowires in microsystems by local micrometer-scale vapor-phase epitaxy.

Mølhave K, Wacaser BA, Petersen DH, Wagner JB, Samuelson L, Bøggild P.

Small. 2008 Oct;4(10):1741-6. doi: 10.1002/smll.200800366.

PMID:
18819133
7.

Structures of planar defects in ZnO nanobelts and nanowires.

Ding Y, Wang ZL.

Micron. 2009 Apr;40(3):335-42. doi: 10.1016/j.micron.2008.10.008. Epub 2008 Nov 5.

PMID:
19081262
8.

The nature of catalyst particles and growth mechanisms of GaN nanowires grown by Ni-assisted metal-organic chemical vapor deposition.

Weng X, Burke RA, Redwing JM.

Nanotechnology. 2009 Feb 25;20(8):085610. doi: 10.1088/0957-4484/20/8/085610. Epub 2009 Feb 3.

PMID:
19417458
9.

Crystal phase engineered quantum wells in ZnO nanowires.

Khranovskyy V, Glushenkov AM, Chen Y, Khalid A, Zhang H, Hultman L, Monemar B, Yakimova R.

Nanotechnology. 2013 May 31;24(21):215202. doi: 10.1088/0957-4484/24/21/215202. Epub 2013 Apr 26.

PMID:
23619281
10.

Simultaneous integration of different nanowires on single textured Si (100) substrates.

Rieger T, Rosenbach D, Mussler G, Schäpers T, Grützmacher D, Lepsa MI.

Nano Lett. 2015 Mar 11;15(3):1979-86. doi: 10.1021/nl504854v. Epub 2015 Feb 9.

PMID:
25650521
11.

Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition.

Lim SK, Tambe MJ, Brewster MM, Gradecak S.

Nano Lett. 2008 May;8(5):1386-92. doi: 10.1021/nl080129n. Epub 2008 Apr 4.

PMID:
18386937
12.

Selective surface functionalization of silicon nanowires via nanoscale joule heating.

Park I, Li Z, Pisano AP, Williams RS.

Nano Lett. 2007 Oct;7(10):3106-11. Epub 2007 Sep 26.

PMID:
17894518
13.

Seedless Growth of Bismuth Nanowire Array via Vacuum Thermal Evaporation.

Liu M, Nam CY, Zhang L.

J Vis Exp. 2015 Dec 21;(106):e53396. doi: 10.3791/53396.

PMID:
26709727
14.

Confinement-guided shaping of semiconductor nanowires and nanoribbons: "writing with nanowires".

Pevzner A, Engel Y, Elnathan R, Tsukernik A, Barkay Z, Patolsky F.

Nano Lett. 2012 Jan 11;12(1):7-12. doi: 10.1021/nl201527h. Epub 2011 Dec 14.

PMID:
22142384
15.

Large scale synthesis of highly pure single crystalline tellurium nanowires by thermal evaporation method.

Mohanty P, Park J, Kim B.

J Nanosci Nanotechnol. 2006 Nov;6(11):3380-3.

PMID:
17252770
16.
17.

TaSi2 nanowires: A potential field emitter and interconnect.

Chueh YL, Ko MT, Chou LJ, Chen LJ, Wu CS, Chen CD.

Nano Lett. 2006 Aug;6(8):1637-44.

PMID:
16895349
18.

On-film formation of bi nanowires with extraordinary electron mobility.

Shim W, Ham J, Lee KI, Jeung WY, Johnson M, Lee W.

Nano Lett. 2009 Jan;9(1):18-22. doi: 10.1021/nl8016829.

PMID:
19032034
19.

Experimental-computational investigation of ZnO nanowires strength and fracture.

Agrawal R, Peng B, Espinosa HD.

Nano Lett. 2009 Dec;9(12):4177-83. doi: 10.1021/nl9023885.

PMID:
19791795
20.

Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process.

Joyce HJ, Gao Q, Tan HH, Jagadish C, Kim Y, Zhang X, Guo Y, Zou J.

Nano Lett. 2007 Apr;7(4):921-6. Epub 2007 Mar 3.

PMID:
17335270

Supplemental Content

Support Center