Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

From structure to systems: high-resolution, quantitative genetic analysis of RNA polymerase II.

Braberg H, Jin H, Moehle EA, Chan YA, Wang S, Shales M, Benschop JJ, Morris JH, Qiu C, Hu F, Tang LK, Fraser JS, Holstege FC, Hieter P, Guthrie C, Kaplan CD, Krogan NJ.

Cell. 2013 Aug 15;154(4):775-88. doi: 10.1016/j.cell.2013.07.033. Epub 2013 Aug 8.

2.

The role of TFIIB-RNA polymerase II interaction in start site selection in yeast cells.

Zhang DY, Carson DJ, Ma J.

Nucleic Acids Res. 2002 Jul 15;30(14):3078-85.

3.
4.

Sub1 and RPA associate with RNA polymerase II at different stages of transcription.

Sikorski TW, Ficarro SB, Holik J, Kim T, Rando OJ, Marto JA, Buratowski S.

Mol Cell. 2011 Nov 4;44(3):397-409. doi: 10.1016/j.molcel.2011.09.013.

6.

Functions of Saccharomyces cerevisiae TFIIF during transcription start site utilization.

Khaperskyy DA, Ammerman ML, Majovski RC, Ponticelli AS.

Mol Cell Biol. 2008 Jun;28(11):3757-66. doi: 10.1128/MCB.02272-07. Epub 2008 Mar 24.

7.

Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II.

Archambault J, Lacroute F, Ruet A, Friesen JD.

Mol Cell Biol. 1992 Sep;12(9):4142-52.

9.

The yeast 5'-3' exonuclease Rat1p functions during transcription elongation by RNA polymerase II.

Jimeno-González S, Haaning LL, Malagon F, Jensen TH.

Mol Cell. 2010 Feb 26;37(4):580-7. doi: 10.1016/j.molcel.2010.01.019.

10.

A reduction in RNA polymerase II initiation rate suppresses hyper-recombination and transcription-elongation impairment of THO mutants.

Jimeno S, García-Rubio M, Luna R, Aguilera A.

Mol Genet Genomics. 2008 Oct;280(4):327-36. doi: 10.1007/s00438-008-0368-8. Epub 2008 Aug 6.

PMID:
18682986
11.

Adventures in time and space: splicing efficiency and RNA polymerase II elongation rate.

Moehle EA, Braberg H, Krogan NJ, Guthrie C.

RNA Biol. 2014;11(4):313-9. doi: 10.4161/rna.28646. Epub 2014 Apr 2. Review.

12.

Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate.

García A, Collin A, Calvo O.

Mol Biol Cell. 2012 Nov;23(21):4297-312. doi: 10.1091/mbc.E12-04-0331. Epub 2012 Sep 12.

13.

Mutations in the Saccharomyces cerevisiae RPB1 gene conferring hypersensitivity to 6-azauracil.

Malagon F, Kireeva ML, Shafer BK, Lubkowska L, Kashlev M, Strathern JN.

Genetics. 2006 Apr;172(4):2201-9. Epub 2006 Mar 1.

14.

GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein.

Staresincic L, Walker J, Dirac-Svejstrup AB, Mitter R, Svejstrup JQ.

J Biol Chem. 2011 Oct 14;286(41):35553-61. doi: 10.1074/jbc.M111.286161. Epub 2011 Aug 15.

15.

The Ssu72 phosphatase mediates the RNA polymerase II initiation-elongation transition.

Rosado-Lugo JD, Hampsey M.

J Biol Chem. 2014 Dec 5;289(49):33916-26. doi: 10.1074/jbc.M114.608695. Epub 2014 Oct 22.

16.

Rtr1 is the Saccharomyces cerevisiae homolog of a novel family of RNA polymerase II-binding proteins.

Gibney PA, Fries T, Bailer SM, Morano KA.

Eukaryot Cell. 2008 Jun;7(6):938-48. doi: 10.1128/EC.00042-08. Epub 2008 Apr 11.

17.

High-throughput genetic and gene expression analysis of the RNAPII-CTD reveals unexpected connections to SRB10/CDK8.

Aristizabal MJ, Negri GL, Benschop JJ, Holstege FC, Krogan NJ, Kobor MS.

PLoS Genet. 2013 Aug;9(8):e1003758. doi: 10.1371/journal.pgen.1003758. Epub 2013 Aug 29.

19.

Complete, 12-subunit RNA polymerase II at 4.1-A resolution: implications for the initiation of transcription.

Bushnell DA, Kornberg RD.

Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):6969-73. Epub 2003 May 13.

20.

Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD.

Somesh BP, Sigurdsson S, Saeki H, Erdjument-Bromage H, Tempst P, Svejstrup JQ.

Cell. 2007 Apr 6;129(1):57-68.

Supplemental Content

Support Center