Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Absorption of resveratrol by vascular endothelial cells through passive diffusion and an SGLT1-mediated pathway.

Chen ML, Yi L, Jin X, Xie Q, Zhang T, Zhou X, Chang H, Fu YJ, Zhu JD, Zhang QY, Mi MT.

J Nutr Biochem. 2013 Nov;24(11):1823-9. doi: 10.1016/j.jnutbio.2013.04.003. Epub 2013 Aug 6.

PMID:
23927891
2.

Delphinidin-3-glucoside protects against oxidized low-density lipoprotein-induced mitochondrial dysfunction in vascular endothelial cells via the sodium-dependent glucose transporter SGLT1.

Jin X, Yi L, Chen ML, Chen CY, Chang H, Zhang T, Wang L, Zhu JD, Zhang QY, Mi MT.

PLoS One. 2013 Jul 18;8(7):e68617. doi: 10.1371/journal.pone.0068617. Print 2013. Erratum in: PLoS One. 2014;9(1). doi:10.1371/annotation/774b483b-cba3-46ce-a922-09d7f05487b0.

3.

Penetration of resveratrol into bovine aortic endothelial cells (BAEC): a possible passive diffusion.

Frombaum M, Le Clanche S, Thérond P, Nubret E, Bonnefont-Rousselot D, Borderie D.

C R Biol. 2012 Apr;335(4):247-52. doi: 10.1016/j.crvi.2012.03.013. Epub 2012 Apr 28.

PMID:
22578570
4.

Development of a cell-based nonradioactive glucose uptake assay system for SGLT1 and SGLT2.

Kanwal A, Singh SP, Grover P, Banerjee SK.

Anal Biochem. 2012 Oct 1;429(1):70-5. doi: 10.1016/j.ab.2012.07.003. Epub 2012 Jul 14.

PMID:
22796500
5.

The flavonol quercetin-3-glucoside inhibits cyanidin-3-glucoside absorption in vitro.

Walton MC, McGhie TK, Reynolds GW, Hendriks WH.

J Agric Food Chem. 2006 Jun 28;54(13):4913-20.

PMID:
16787048
6.

Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG.

Chang HC, Yang SF, Huang CC, Lin TS, Liang PH, Lin CJ, Hsu LC.

Mol Biosyst. 2013 Aug;9(8):2010-20. doi: 10.1039/c3mb70060g. Epub 2013 May 8.

PMID:
23657801
7.

trans-Resveratrol and ε-viniferin decrease glucose absorption in porcine jejunum and ileum in vitro.

Guschlbauer M, Klinger S, Burmester M, Horn J, Kulling SE, Breves G.

Comp Biochem Physiol A Mol Integr Physiol. 2013 Jul;165(3):313-8. doi: 10.1016/j.cbpa.2013.03.040. Epub 2013 Apr 6.

PMID:
23570675
8.

Protein kinase-A affects sorting and conformation of the sodium-dependent glucose co-transporter SGLT1.

Subramanian S, Glitz P, Kipp H, Kinne RK, Castaneda F.

J Cell Biochem. 2009 Feb 15;106(3):444-52. doi: 10.1002/jcb.22025.

PMID:
19115253
9.

A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport.

Castaneda F, Kinne RK.

Mol Cell Biochem. 2005 Dec;280(1-2):91-8.

PMID:
16311909
10.

Endothelial Na+-D-glucose cotransporter: no role in insulin-mediated glucose uptake.

Kolka CM, Rattigan S, Richards SM, Barrett EJ, Clark MG.

Horm Metab Res. 2005 Nov;37(11):657-61.

PMID:
16308832
11.

Diurnal rhythmicity in glucose uptake is mediated by temporal periodicity in the expression of the sodium-glucose cotransporter (SGLT1).

Balakrishnan A, Stearns AT, Rounds J, Irani J, Giuffrida M, Rhoads DB, Ashley SW, Tavakkolizadeh A.

Surgery. 2008 Jun;143(6):813-8. doi: 10.1016/j.surg.2008.03.018.

12.

Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells.

Klinge CM, Blankenship KA, Risinger KE, Bhatnagar S, Noisin EL, Sumanasekera WK, Zhao L, Brey DM, Keynton RS.

J Biol Chem. 2005 Mar 4;280(9):7460-8. Epub 2004 Dec 22.

13.

Effects of resveratrol on NO secretion stimulated by insulin and its dependence on SIRT1 in high glucose cultured endothelial cells.

Yang J, Wang N, Li J, Zhang J, Feng P.

Endocrine. 2010 Apr;37(2):365-72. doi: 10.1007/s12020-010-9314-8. Epub 2010 Mar 13.

PMID:
20960276
14.

Pharmacokinetic and pharmacodynamic modeling of the effect of an sodium-glucose cotransporter inhibitor, phlorizin, on renal glucose transport in rats.

Yamaguchi K, Kato M, Suzuki M, Asanuma K, Aso Y, Ikeda S, Ishigai M.

Drug Metab Dispos. 2011 Oct;39(10):1801-7. doi: 10.1124/dmd.111.040048. Epub 2011 Jun 28.

15.

SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation.

Oliveira TL, Candeia-Medeiros N, Cavalcante-Araújo PM, Melo IS, Fávaro-Pípi E, Fátima LA, Rocha AA, Goulart LR, Machado UF, Campos RR, Sabino-Silva R.

Sci Rep. 2016 Feb 23;6:21752. doi: 10.1038/srep21752.

16.

Cellular uptake of dietary flavonoid quercetin 4'-beta-glucoside by sodium-dependent glucose transporter SGLT1.

Walgren RA, Lin JT, Kinne RK, Walle T.

J Pharmacol Exp Ther. 2000 Sep;294(3):837-43.

17.

Development of the intestinal SGLT1 transporter in rats.

Khan JM, Wingertzahn MA, Teichberg S, Vancurova I, Harper RG, Wapnir RA.

Mol Genet Metab. 2000 Mar;69(3):233-9.

PMID:
10767178
18.

Up-regulation of endothelial nitric oxide synthase (eNOS), silent mating type information regulation 2 homologue 1 (SIRT1) and autophagy-related genes by repeated treatments with resveratrol in human umbilical vein endothelial cells.

Takizawa Y, Kosuge Y, Awaji H, Tamura E, Takai A, Yanai T, Yamamoto R, Kokame K, Miyata T, Nakata R, Inoue H.

Br J Nutr. 2013 Dec;110(12):2150-5. doi: 10.1017/S0007114513001670. Epub 2013 Jun 11.

PMID:
23750556
19.

Up-regulation of sodium-dependent glucose transporter by interaction with heat shock protein 70.

Ikari A, Nakano M, Kawano K, Suketa Y.

J Biol Chem. 2002 Sep 6;277(36):33338-43. Epub 2002 Jun 24.

20.

Resveratrol protects human endothelium from H(2)O(2)-induced oxidative stress and senescence via SirT1 activation.

Kao CL, Chen LK, Chang YL, Yung MC, Hsu CC, Chen YC, Lo WL, Chen SJ, Ku HH, Hwang SJ.

J Atheroscler Thromb. 2010 Sep 30;17(9):970-9. Epub 2010 Jul 13.

Supplemental Content

Support Center