Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Acoustic field characterization of the Duolith: measurements and modeling of a clinical shock wave therapy device.

Perez C, Chen H, Matula TJ, Karzova M, Khokhlova VA.

J Acoust Soc Am. 2013 Aug;134(2):1663-74. doi: 10.1121/1.4812885.

2.

Experimentally validated multiphysics computational model of focusing and shock wave formation in an electromagnetic lithotripter.

Fovargue DE, Mitran S, Smith NB, Sankin GN, Simmons WN, Zhong P.

J Acoust Soc Am. 2013 Aug;134(2):1598-609. doi: 10.1121/1.4812881.

3.

A survey of the acoustic output of commercial extracorporeal shock wave lithotripters.

Coleman AJ, Saunders JE.

Ultrasound Med Biol. 1989;15(3):213-27.

PMID:
2741250
4.

Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone.

Kang G, Cho SC, Coleman AJ, Choi MJ.

J Acoust Soc Am. 2014 Mar;135(3):1139-48. doi: 10.1121/1.4863199.

PMID:
24606257
5.

Electromagnetic hydrophone for pressure determination of shock wave pulses.

Etienne J, Filipczyński L, Kujawska T, Zienkiewicz B.

Ultrasound Med Biol. 1997;23(5):747-54.

PMID:
9253822
6.

On the use of Gegenbauer reconstructions for shock wave propagation modeling.

Jing Y, Clement GT.

J Acoust Soc Am. 2011 Sep;130(3):1115-24. doi: 10.1121/1.3621485.

7.

Effect of the body wall on lithotripter shock waves.

Li G, McAteer JA, Williams JC Jr, Berwick ZC.

J Endourol. 2014 Apr;28(4):446-52. doi: 10.1089/end.2013.0662. Epub 2014 Jan 8.

8.

Focusing of shock waves induced by optical breakdown in water.

Sankin GN, Zhou Y, Zhong P.

J Acoust Soc Am. 2008 Jun;123(6):4071-81. doi: 10.1121/1.2903865.

9.

An FDTD-based computer simulation platform for shock wave propagation in electrohydraulic lithotripsy.

Yılmaz B, Çiftçi E.

Comput Methods Programs Biomed. 2013 Jun;110(3):389-98. doi: 10.1016/j.cmpb.2012.11.011. Epub 2012 Dec 20.

PMID:
23261077
11.

Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method.

Kobayashi K, Kodama T, Takahira H.

Phys Med Biol. 2011 Oct 7;56(19):6421-40. doi: 10.1088/0031-9155/56/19/016. Epub 2011 Sep 15.

PMID:
21918295
12.

A heuristic model of stone comminution in shock wave lithotripsy.

Smith NB, Zhong P.

J Acoust Soc Am. 2013 Aug;134(2):1548-58. doi: 10.1121/1.4812876.

13.

Acoustic field of a ballistic shock wave therapy device.

Cleveland RO, Chitnis PV, McClure SR.

Ultrasound Med Biol. 2007 Aug;33(8):1327-35. Epub 2007 Apr 27.

PMID:
17467154
14.

Size and location of defects at the coupling interface affect lithotripter performance.

Li G, Williams JC Jr, Pishchalnikov YA, Liu Z, McAteer JA.

BJU Int. 2012 Dec;110(11 Pt C):E871-7. doi: 10.1111/j.1464-410X.2012.11382.x. Epub 2012 Sep 3.

15.

The acoustic fields of the Wolf electrohydraulic lithotripter.

Campbell DS, Flynn HG, Blackstock DT, Linke C, Carstensen EL.

J Lithotr Stone Dis. 1991 Apr;3(2):147-56.

PMID:
10149155
16.

The generation of negative pressure waves for cavitation studies.

Carnell MT, Gentry TP, Emmony DC.

Ultrasonics. 1998 Feb;36(1-5):689-93.

PMID:
9651598
17.

A comparison of light spot hydrophone and fiber optic probe hydrophone for lithotripter field characterization.

Smith N, Sankin GN, Simmons WN, Nanke R, Fehre J, Zhong P.

Rev Sci Instrum. 2012 Jan;83(1):014301. doi: 10.1063/1.3678638.

18.

Theoretical predictions of the acoustic pressure generated by a shock wave lithotripter.

Coleman AJ, Choi MJ, Saunders JE.

Ultrasound Med Biol. 1991;17(3):245-55.

PMID:
1887510
19.

Single-shot measurements of the acoustic field of an electrohydraulic lithotripter using a hydrophone array.

Alibakhshi MA, Kracht JM, Cleveland RO, Filoux E, Ketterling JA.

J Acoust Soc Am. 2013 May;133(5):3176-85. doi: 10.1121/1.4795801.

20.

Acoustic characterization of high intensity focused ultrasound fields: a combined measurement and modeling approach.

Canney MS, Bailey MR, Crum LA, Khokhlova VA, Sapozhnikov OA.

J Acoust Soc Am. 2008 Oct;124(4):2406-20. doi: 10.1121/1.2967836.

Supplemental Content

Support Center