Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 155

1.

APPL1 transgenic mice are protected from high-fat diet-induced cardiac dysfunction.

Park M, Wu D, Park T, Choi CS, Li RK, Cheng KK, Xu A, Sweeney G.

Am J Physiol Endocrinol Metab. 2013 Oct 1;305(7):E795-804. doi: 10.1152/ajpendo.00257.2013. Epub 2013 Aug 6.

2.

APPL1 potentiates insulin secretion in pancreatic β cells by enhancing protein kinase Akt-dependent expression of SNARE proteins in mice.

Cheng KK, Lam KS, Wu D, Wang Y, Sweeney G, Hoo RL, Zhang J, Xu A.

Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8919-24. doi: 10.1073/pnas.1202435109. Epub 2012 May 7.

3.

Partial deletion of ROCK2 protects mice from high-fat diet-induced cardiac insulin resistance and contractile dysfunction.

Soliman H, Nyamandi V, Garcia-Patino M, Varela JN, Bankar G, Lin G, Jia Z, MacLeod KM.

Am J Physiol Heart Circ Physiol. 2015 Jul 1;309(1):H70-81. doi: 10.1152/ajpheart.00664.2014. Epub 2015 Apr 24.

4.

Taurine supplementation prevents morpho-physiological alterations in high-fat diet mice pancreatic β-cells.

Ribeiro RA, Santos-Silva JC, Vettorazzi JF, Cotrim BB, Mobiolli DD, Boschero AC, Carneiro EM.

Amino Acids. 2012 Oct;43(4):1791-801. Epub 2012 Mar 15.

PMID:
22418865
5.

Exercise training performed simultaneously to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in mice.

Farias JM, Maggi RM, Tromm CB, Silva LA, Luciano TF, Marques SO, Lira FS, de Souza CT, Pinho RA.

Lipids Health Dis. 2012 Oct 10;11:134. doi: 10.1186/1476-511X-11-134.

6.

Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites.

Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH, Kim CK, Sinclair AJ, Febbraio MA, Watt MJ.

J Appl Physiol (1985). 2006 May;100(5):1467-74. Epub 2005 Dec 15.

7.

Metabolic consequences of ENPP1 overexpression in adipose tissue.

Pan W, Ciociola E, Saraf M, Tumurbaatar B, Tuvdendorj D, Prasad S, Chandalia M, Abate N.

Am J Physiol Endocrinol Metab. 2011 Nov;301(5):E901-11. doi: 10.1152/ajpendo.00087.2011. Epub 2011 Aug 2.

8.
9.

Long-term adaptation of global transcription and metabolism in the liver of high-fat diet-fed C57BL/6J mice.

Do GM, Oh HY, Kwon EY, Cho YY, Shin SK, Park HJ, Jeon SM, Kim E, Hur CG, Park TS, Sung MK, McGregor RA, Choi MS.

Mol Nutr Food Res. 2011 Sep;55 Suppl 2:S173-85. doi: 10.1002/mnfr.201100064. Epub 2011 May 25.

PMID:
21618427
10.

Transgenic MSH overexpression attenuates the metabolic effects of a high-fat diet.

Lee M, Kim A, Chua SC Jr, Obici S, Wardlaw SL.

Am J Physiol Endocrinol Metab. 2007 Jul;293(1):E121-31. Epub 2007 Mar 20.

11.

Disruption of CXC motif chemokine ligand-14 in mice ameliorates obesity-induced insulin resistance.

Nara N, Nakayama Y, Okamoto S, Tamura H, Kiyono M, Muraoka M, Tanaka K, Taya C, Shitara H, Ishii R, Yonekawa H, Minokoshi Y, Hara T.

J Biol Chem. 2007 Oct 19;282(42):30794-803. Epub 2007 Aug 27.

12.

Adipose overexpression of heme oxygenase-1 does not protect against high fat diet-induced insulin resistance in mice.

Huang JY, Chiang MT, Chau LY.

PLoS One. 2013;8(2):e55369. doi: 10.1371/journal.pone.0055369. Epub 2013 Feb 4.

13.

Cardiac-specific expression of heat shock protein 27 attenuated endotoxin-induced cardiac dysfunction and mortality in mice through a PI3K/Akt-dependent mechanism.

You W, Min X, Zhang X, Qian B, Pang S, Ding Z, Li C, Gao X, Di R, Cheng Y, Liu L.

Shock. 2009 Jul;32(1):108-17. doi: 10.1097/SHK.0b013e318199165d.

PMID:
19106822
14.

Sar1b transgenic male mice are more susceptible to high-fat diet-induced obesity, insulin insensitivity and intestinal chylomicron overproduction.

Levy E, Spahis S, Garofalo C, Marcil V, Montoudis A, Sinnet D, Sanchez R, Peretti N, Beaulieu JF, Sane A.

J Nutr Biochem. 2014 May;25(5):540-8. doi: 10.1016/j.jnutbio.2014.01.004. Epub 2014 Feb 5.

PMID:
24657056
15.

TNFα gene knockout differentially affects lipid deposition in liver and skeletal muscle of high-fat-diet mice.

Salles J, Tardif N, Landrier JF, Mothe-Satney I, Guillet C, Boue-Vaysse C, Combaret L, Giraudet C, Patrac V, Bertrand-Michel J, Denis P, Chardigny JM, Boirie Y, Walrand S.

J Nutr Biochem. 2012 Dec;23(12):1685-93. doi: 10.1016/j.jnutbio.2011.12.001. Epub 2012 Mar 29.

PMID:
22464148
16.

Macrophage migration inhibitory factor inhibition is deleterious for high-fat diet-induced cardiac dysfunction.

Palud A, Marciniak C, Montaigne D, Marechal X, Ballot C, Hassoun SM, Decoster B, Neviere R, Lancel S.

PLoS One. 2013;8(3):e58718. doi: 10.1371/journal.pone.0058718. Epub 2013 Mar 11.

17.

Impairment of cardiac insulin signaling and myocardial contractile performance in high-cholesterol/fructose-fed rats.

Deng JY, Huang JP, Lu LS, Hung LM.

Am J Physiol Heart Circ Physiol. 2007 Aug;293(2):H978-87. Epub 2007 Mar 30.

18.

AMP-activated protein kinase α2 is an essential signal in the regulation of insulin-stimulated fatty acid uptake in control-fed and high-fat-fed mice.

Abbott MJ, Constantinescu S, Turcotte LP.

Exp Physiol. 2012 May;97(5):603-17. doi: 10.1113/expphysiol.2012.064402. Epub 2012 Feb 3.

19.

Role of Mitochondrial Oxidative Stress in Glucose Tolerance, Insulin Resistance, and Cardiac Diastolic Dysfunction.

Jeong EM, Chung J, Liu H, Go Y, Gladstein S, Farzaneh-Far A, Lewandowski ED, Dudley SC Jr.

J Am Heart Assoc. 2016 May 5;5(5). pii: e003046. doi: 10.1161/JAHA.115.003046.

20.

Mechanisms for increased myocardial fatty acid utilization following short-term high-fat feeding.

Wright JJ, Kim J, Buchanan J, Boudina S, Sena S, Bakirtzi K, Ilkun O, Theobald HA, Cooksey RC, Kandror KV, Abel ED.

Cardiovasc Res. 2009 May 1;82(2):351-60. doi: 10.1093/cvr/cvp017. Epub 2009 Jan 15.

Supplemental Content

Support Center