Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 80

1.

QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields.

Kuroda Y, Kaga A, Tomooka N, Yano H, Takada Y, Kato S, Vaughan D.

Ecol Evol. 2013 Jul;3(7):2150-68. doi: 10.1002/ece3.606. Epub 2013 Jun 5.

3.

QTL mapping of domestication-related traits in soybean (Glycine max).

Liu B, Fujita T, Yan ZH, Sakamoto S, Xu D, Abe J.

Ann Bot. 2007 Nov;100(5):1027-38. Epub 2007 Aug 7.

4.

A model to predict the frequency of integration of fitness-related QTLs from cultivated to wild soybean.

Kitamoto N, Kaga A, Kuroda Y, Ohsawa R.

Transgenic Res. 2012 Feb;21(1):131-8. doi: 10.1007/s11248-011-9516-8. Epub 2011 May 5.

PMID:
21544624
5.

Genetic variants in root architecture-related genes in a Glycine soja accession, a potential resource to improve cultivated soybean.

Prince SJ, Song L, Qiu D, Maldonado Dos Santos JV, Chai C, Joshi T, Patil G, Valliyodan B, Vuong TD, Murphy M, Krampis K, Tucker DM, Biyashev R, Dorrance AE, Maroof MA, Xu D, Shannon JG, Nguyen HT.

BMC Genomics. 2015 Feb 25;16:132. doi: 10.1186/s12864-015-1334-6.

6.

Genomic differences between cultivated soybean, G. max and its wild relative G. soja.

Joshi T, Valliyodan B, Wu JH, Lee SH, Xu D, Nguyen HT.

BMC Genomics. 2013;14 Suppl 1:S5. doi: 10.1186/1471-2164-14-S1-S5. Epub 2013 Jan 21.

7.

Performance of hybrid progeny formed between genetically modified herbicide-tolerant soybean and its wild ancestor.

Guan ZJ, Zhang PF, Wei W, Mi XC, Kang DM, Liu B.

AoB Plants. 2015 Oct 27;7. pii: plv121. doi: 10.1093/aobpla/plv121.

8.

Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size.

Gu Y, Li W, Jiang H, Wang Y, Gao H, Liu M, Chen Q, Lai Y, He C.

J Exp Bot. 2017 May 17;68(11):2717-2729. doi: 10.1093/jxb/erx147.

PMID:
28472462
9.

Mapping and use of QTLs controlling pod dehiscence in soybean.

Funatsuki H, Hajika M, Yamada T, Suzuki M, Hagihara S, Tanaka Y, Fujita S, Ishimoto M, Fujino K.

Breed Sci. 2012 Jan;61(5):554-8. doi: 10.1270/jsbbs.61.554. Epub 2012 Feb 4.

10.

Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation.

Kuroda Y, Kaga A, Tomooka N, Vaughan DA.

Mol Ecol. 2006 Apr;15(4):959-74.

PMID:
16599960
11.

Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci.

Li YH, Li W, Zhang C, Yang L, Chang RZ, Gaut BS, Qiu LJ.

New Phytol. 2010 Oct;188(1):242-53. doi: 10.1111/j.1469-8137.2010.03344.x. Epub 2010 Jul 6.

12.

Chromosome segment detection for seed size and shape traits using an improved population of wild soybean chromosome segment substitution lines.

Yang H, Wang W, He Q, Xiang S, Tian D, Zhao T, Gai J.

Physiol Mol Biol Plants. 2017 Oct;23(4):877-889. doi: 10.1007/s12298-017-0468-1. Epub 2017 Sep 19.

PMID:
29158636
13.

The genomic relationship between Glycine max (L.) Merr. and G. soja Sieb. and Zucc. as revealed by pachytene chromosome analysis.

Singh RJ, Hymowitz T.

Theor Appl Genet. 1988 Nov;76(5):705-11. doi: 10.1007/BF00303516.

PMID:
24232348
14.

RFLP analysis of soybean seed protein and oil content.

Diers BW, Keim P, Fehr WR, Shoemaker RC.

Theor Appl Genet. 1992 Mar;83(5):608-12. doi: 10.1007/BF00226905.

PMID:
24202678
15.

Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping.

Patil G, Vuong TD, Kale S, Valliyodan B, Deshmukh R, Zhu C, Wu X, Bai Y, Yungbluth D, Lu F, Kumpatla S, Shannon JG, Varshney RK, Nguyen HT.

Plant Biotechnol J. 2018 Apr 4. doi: 10.1111/pbi.12929. [Epub ahead of print]

16.

Changes in gene expression between a soybean F1 hybrid and its parents are associated with agronomically valuable traits.

Taliercio E, Eickholt D, Rouf R, Carter T.

PLoS One. 2017 May 11;12(5):e0177225. doi: 10.1371/journal.pone.0177225. eCollection 2017.

17.

QTL mapping of antixenosis resistance to common cutworm (Spodoptera litura Fabricius) in wild soybean (Glycine soja).

Oki N, Kaga A, Shimizu T, Takahashi M, Kono Y, Takahashi M.

PLoS One. 2017 Dec 12;12(12):e0189440. doi: 10.1371/journal.pone.0189440. eCollection 2017.

18.

Genetic diversity of rhg1 and Rhg4 loci in wild soybeans resistant to soybean cyst nematode race 3.

Yuan CP, Wang YJ, Zhao HK, Zhang L, Wang YM, Liu XD, Zhong XF, Dong YS.

Genet Mol Res. 2016 Jun 10;15(2). doi: 10.4238/gmr.15027386.

19.

[Genetic variation of SNP loci based on candidate gene for resistance to soybean cyst nematode].

Li YH, Yuan CP, Zhang C, Li W, Nan HY, Chang RZ, Qiu LJ.

Yi Chuan. 2009 Dec;31(12):1259-64. Chinese.

PMID:
20042394
20.

Hybridization between GM soybean (Glycine max (L.) Merr.) and wild soybean (Glycine soja Sieb. et Zucc.) under field conditions in Japan.

Mizuguti A, Ohigashi K, Yoshimura Y, Kaga A, Kuroda Y, Matsuo K.

Environ Biosafety Res. 2010 Jan-Mar;9(1):13-23. doi: 10.1051/ebr/2010004. Epub 2010 Oct 8.

Supplemental Content

Support Center