Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

Binding of a pleurotolysin ortholog from Pleurotus eryngii to sphingomyelin and cholesterol-rich membrane domains.

Bhat HB, Kishimoto T, Abe M, Makino A, Inaba T, Murate M, Dohmae N, Kurahashi A, Nishibori K, Fujimori F, Greimel P, Ishitsuka R, Kobayashi T.

J Lipid Res. 2013 Oct;54(10):2933-43. doi: 10.1194/jlr.D041731. Epub 2013 Aug 5.

2.

Effect of pH on the pore forming activity and conformational stability of ostreolysin, a lipid raft-binding protein from the edible mushroom Pleurotus ostreatus.

Berne S, Sepcić K, Anderluh G, Turk T, Macek P, Poklar Ulrih N.

Biochemistry. 2005 Aug 23;44(33):11137-47.

PMID:
16101298
3.

Membrane cholesterol and sphingomyelin, and ostreolysin A are obligatory for pore-formation by a MACPF/CDC-like pore-forming protein, pleurotolysin B.

Ota K, Leonardi A, Mikelj M, Skočaj M, Wohlschlager T, Künzler M, Aebi M, Narat M, Križaj I, Anderluh G, Sepčić K, Maček P.

Biochimie. 2013 Oct;95(10):1855-64. doi: 10.1016/j.biochi.2013.06.012. Epub 2013 Jun 25.

PMID:
23806422
4.

Ostreolysin, a pore-forming protein from the oyster mushroom, interacts specifically with membrane cholesterol-rich lipid domains.

Sepcić K, Berne S, Rebolj K, Batista U, Plemenitas A, Sentjurc M, Macek P.

FEBS Lett. 2004 Sep 24;575(1-3):81-5.

5.

Pleurotolysin, a novel sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus, assembles into a transmembrane pore complex.

Tomita T, Noguchi K, Mimuro H, Ukaji F, Ito K, Sugawara-Tomita N, Hashimoto Y.

J Biol Chem. 2004 Jun 25;279(26):26975-82. Epub 2004 Apr 14.

6.

Evaluation of aegerolysins as novel tools to detect and visualize ceramide phosphoethanolamine, a major sphingolipid in invertebrates.

Bhat HB, Ishitsuka R, Inaba T, Murate M, Abe M, Makino A, Kohyama-Koganeya A, Nagao K, Kurahashi A, Kishimoto T, Tahara M, Yamano A, Nagamune K, Hirabayashi Y, Juni N, Umeda M, Fujimori F, Nishibori K, Yamaji-Hasegawa A, Greimel P, Kobayashi T.

FASEB J. 2015 Sep;29(9):3920-34. doi: 10.1096/fj.15-272112. Epub 2015 Jun 9.

7.

Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR.

Aussenac F, Tavares M, Dufourc EJ.

Biochemistry. 2003 Feb 18;42(6):1383-90.

PMID:
12578350
8.

The sensing of membrane microdomains based on pore-forming toxins.

Skočaj M, Bakrač B, Križaj I, Maček P, Anderluh G, Sepčić K.

Curr Med Chem. 2013;20(4):491-501. Review.

PMID:
23244522
9.

Monounsaturated PE does not phase-separate from the lipid raft molecules sphingomyelin and cholesterol: role for polyunsaturation?

Shaikh SR, Brzustowicz MR, Gustafson N, Stillwell W, Wassall SR.

Biochemistry. 2002 Aug 27;41(34):10593-602. Erratum in: Biochemistry 2002 Oct 8;41(40):12270.

PMID:
12186543
10.

Fluorinated cholesterol retains domain-forming activity in sphingomyelin bilayers.

Matsumori N, Okazaki H, Nomura K, Murata M.

Chem Phys Lipids. 2011 Jul;164(5):401-8. doi: 10.1016/j.chemphyslip.2011.05.007. Epub 2011 Jun 1.

PMID:
21664344
11.

Lysophospholipids prevent binding of a cytolytic protein ostreolysin to cholesterol-enriched membrane domains.

Chowdhury HH, Rebolj K, Kreft M, Zorec R, Macek P, Sepcić K.

Toxicon. 2008 Jun 15;51(8):1345-56. doi: 10.1016/j.toxicon.2008.03.010. Epub 2008 Mar 18.

PMID:
18455213
12.
14.

Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy.

Ando J, Kinoshita M, Cui J, Yamakoshi H, Dodo K, Fujita K, Murata M, Sodeoka M.

Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4558-63. doi: 10.1073/pnas.1418088112. Epub 2015 Mar 30.

15.

Lipid raft composition modulates sphingomyelinase activity and ceramide-induced membrane physical alterations.

Silva LC, Futerman AH, Prieto M.

Biophys J. 2009 Apr 22;96(8):3210-22. doi: 10.1016/j.bpj.2008.12.3923.

16.

Fusogenicity of Naja naja atra cardiotoxin-like basic protein on sphingomyelin vesicles containing oxidized phosphatidylcholine and cholesterol.

Kao PH, Chen YJ, Yang SY, Lin SR, Hu WP, Chang LS.

J Biochem. 2013 Jun;153(6):523-33. doi: 10.1093/jb/mvt013. Epub 2013 Feb 19.

PMID:
23426438
17.

Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein.

Skočaj M, Resnik N, Grundner M, Ota K, Rojko N, Hodnik V, Anderluh G, Sobota A, Maček P, Veranič P, Sepčić K.

PLoS One. 2014 Mar 24;9(3):e92783. doi: 10.1371/journal.pone.0092783. eCollection 2014.

18.

Dynamics of sphingomyelin- and cholesterol-enriched lipid domains during cytokinesis.

Abe M, Kobayashi T.

Methods Cell Biol. 2017;137:15-24. doi: 10.1016/bs.mcb.2016.03.030. Epub 2016 Apr 21.

PMID:
28065303
19.

Sphingomyelin-rich domains are sites of lysenin oligomerization: implications for raft studies.

Kulma M, Hereć M, Grudziński W, Anderluh G, Gruszecki WI, Kwiatkowska K, Sobota A.

Biochim Biophys Acta. 2010 Mar;1798(3):471-81. doi: 10.1016/j.bbamem.2009.12.004. Epub 2009 Dec 16.

20.

Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy.

Geisse NA, Cover TL, Henderson RM, Edwardson JM.

Biochem J. 2004 Aug 1;381(Pt 3):911-7.

Supplemental Content

Support Center