Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Bench-scale bioethanol production from eucalyptus by high solid saccharification and glucose/xylose fermentation method.

Fujii T, Murakami K, Endo T, Fujimoto S, Minowa T, Matsushika A, Yano S, Sawayama S.

Bioprocess Biosyst Eng. 2014 Apr;37(4):749-54. doi: 10.1007/s00449-013-1032-1. Epub 2013 Aug 6.

2.

Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: I. Influence of the ratio of glucose/xylose on ethanol production.

Matsushika A, Sawayama S.

Appl Biochem Biotechnol. 2013 Feb;169(3):712-21. doi: 10.1007/s12010-012-0013-1. Epub 2012 Dec 29.

PMID:
23271622
3.

Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production.

Olofsson K, Wiman M, Lidén G.

J Biotechnol. 2010 Jan 15;145(2):168-75. doi: 10.1016/j.jbiotec.2009.11.001. Epub 2009 Nov 10.

PMID:
19900494
4.

Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400.

Ohgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G.

J Biotechnol. 2006 Dec 1;126(4):488-98. Epub 2006 May 12.

PMID:
16828190
5.

Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054.

Rudolf A, Baudel H, Zacchi G, Hahn-Hägerdal B, Lidén G.

Biotechnol Bioeng. 2008 Mar 1;99(4):783-90.

PMID:
17787015
6.

Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.

Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S.

Bioresour Technol. 2009 Apr;100(8):2392-8. doi: 10.1016/j.biortech.2008.11.047. Epub 2009 Jan 6.

PMID:
19128960
7.
8.

Effect of initial cell concentration on ethanol production by flocculent Saccharomyces cerevisiae with xylose-fermenting ability.

Matsushika A, Sawayama S.

Appl Biochem Biotechnol. 2010 Nov;162(7):1952-60. doi: 10.1007/s12010-010-8972-6. Epub 2010 Apr 30.

PMID:
20432070
9.

Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation.

Li Y, Park JY, Shiroma R, Tokuyasu K.

J Biosci Bioeng. 2011 Jun;111(6):682-6. doi: 10.1016/j.jbiosc.2011.01.018. Epub 2011 Mar 11.

PMID:
21397557
10.
11.

Ethanol production from Eucalyptus plantation thinnings.

McIntosh S, Vancov T, Palmer J, Spain M.

Bioresour Technol. 2012 Apr;110:264-72. doi: 10.1016/j.biortech.2012.01.114. Epub 2012 Jan 28.

PMID:
22342086
13.

Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.

Bera AK, Sedlak M, Khan A, Ho NW.

Appl Microbiol Biotechnol. 2010 Aug;87(5):1803-11. doi: 10.1007/s00253-010-2609-0. Epub 2010 May 7.

PMID:
20449743
14.

Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production.

Matsushika A, Sawayama S.

Appl Biochem Biotechnol. 2012 Dec;168(8):2094-104. doi: 10.1007/s12010-012-9920-4. Epub 2012 Oct 18.

PMID:
23076570
15.

A genome shuffling-generated Saccharomyces cerevisiae isolate that ferments xylose and glucose to produce high levels of ethanol.

Jingping G, Hongbing S, Gang S, Hongzhi L, Wenxiang P.

J Ind Microbiol Biotechnol. 2012 May;39(5):777-87. doi: 10.1007/s10295-011-1076-7. Epub 2012 Jan 24.

PMID:
22270888
16.

Effect of fermentation conditions on the flocculation of recombinant Saccharomyces cerevisiae capable of co-fermenting glucose and xylose.

Matsushika A, Morikawa H, Goshima T, Hoshino T.

Appl Biochem Biotechnol. 2014 Sep;174(2):623-31. doi: 10.1007/s12010-014-1043-7. Epub 2014 Aug 3.

PMID:
25086918
17.
18.

Novel two-stage fermentation process for bioethanol production using Saccharomyces pastorianus.

Gowtham YK, Miller KP, Hodge DB, Henson JM, Harcum SW.

Biotechnol Prog. 2014 Mar-Apr;30(2):300-10. doi: 10.1002/btpr.1850. Epub 2014 Jan 11.

PMID:
24376155
19.

Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.

Kim SR, Lee KS, Choi JH, Ha SJ, Kweon DH, Seo JH, Jin YS.

J Biotechnol. 2010 Nov;150(3):404-7. doi: 10.1016/j.jbiotec.2010.09.962. Epub 2010 Oct 8.

PMID:
20933550
20.

Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures.

Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B.

Appl Environ Microbiol. 2000 Aug;66(8):3381-6.

Items per page

Supplemental Content

Write to the Help Desk