Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 153

1.

Interaction of Cryptosporidium parvum with mouse dendritic cells leads to their activation and parasite transportation to mesenteric lymph nodes.

Perez-Cordon G, Yang G, Zhou B, Nie W, Li S, Shi L, Tzipori S, Feng H.

Pathog Dis. 2014 Feb;70(1):17-27. doi: 10.1111/2049-632X.12078. Epub 2013 Sep 10.

2.

Dendritic cells play a role in host susceptibility to Cryptosporidium parvum infection.

Bedi B, McNair NN, Mead JR.

Immunol Lett. 2014 Mar-Apr;158(1-2):42-51. doi: 10.1016/j.imlet.2013.11.015. Epub 2013 Dec 1.

PMID:
24295591
3.

Involvement of intestinal epithelial cells in dendritic cell recruitment during C. parvum infection.

Auray G, Lacroix-Lamandé S, Mancassola R, Dimier-Poisson I, Laurent F.

Microbes Infect. 2007 Apr;9(5):574-82. Epub 2007 Feb 20.

PMID:
17395519
4.

Cryptosporidium parvum antigens induce mouse and human dendritic cells to generate Th1-enhancing cytokines.

Bedi B, Mead JR.

Parasite Immunol. 2012 Oct;34(10):473-85. doi: 10.1111/j.1365-3024.2012.01382.x.

5.

Marrow-derived CD40-positive cells are required for mice to clear Cryptosporidium parvum infection.

Hayward AR, Cosyns M, Jones M, Ponnuraj EM.

Infect Immun. 2001 Mar;69(3):1630-4.

6.

Mucosal cytokine and antigen-specific responses to Cryptosporidium parvum in IL-12p40 KO mice.

Ehigiator HN, Romagnoli P, Borgelt K, Fernandez M, McNair N, Secor WE, Mead JR.

Parasite Immunol. 2005 Jan-Feb;27(1-2):17-28.

7.

Endotoxin-induced maturation of MyD88-deficient dendritic cells.

Kaisho T, Takeuchi O, Kawai T, Hoshino K, Akira S.

J Immunol. 2001 May 1;166(9):5688-94.

8.

Dynamics of gut mucosal and systemic Th1/Th2 cytokine responses in interferon-gamma and interleukin-12p40 knock out mice during primary and challenge Cryptosporidium parvum infection.

Tessema TS, Schwamb B, Lochner M, Förster I, Jakobi V, Petry F.

Immunobiology. 2009;214(6):454-66. doi: 10.1016/j.imbio.2008.11.015. Epub 2009 Jan 19.

PMID:
19155092
9.

Intestinal CD103+ dendritic cells are key players in the innate immune control of Cryptosporidium parvum infection in neonatal mice.

Lantier L, Lacroix-Lamandé S, Potiron L, Metton C, Drouet F, Guesdon W, Gnahoui-David A, Le Vern Y, Deriaud E, Fenis A, Rabot S, Descamps A, Werts C, Laurent F.

PLoS Pathog. 2013;9(12):e1003801. doi: 10.1371/journal.ppat.1003801. Epub 2013 Dec 19.

10.

TLR2- and 4-independent immunomodulatory effect of high molecular weight components from Ascaris suum.

Favoretto BC, Silva SR, Jacysyn JF, Câmara NO, Faquim-Mauro EL.

Mol Immunol. 2014 Mar;58(1):17-26. doi: 10.1016/j.molimm.2013.10.011. Epub 2013 Nov 19.

PMID:
24263181
11.

MyD88-dependent pathways mediate resistance to Cryptosporidium parvum infection in mice.

Rogers KA, Rogers AB, Leav BA, Sanchez A, Vannier E, Uematsu S, Akira S, Golenbock D, Ward HD.

Infect Immun. 2006 Jan;74(1):549-56.

12.

miR-27b targets KSRP to coordinate TLR4-mediated epithelial defense against Cryptosporidium parvum infection.

Zhou R, Gong AY, Eischeid AN, Chen XM.

PLoS Pathog. 2012;8(5):e1002702. doi: 10.1371/journal.ppat.1002702. Epub 2012 May 17.

13.

Dynamics of Th17 associating cytokines in Cryptosporidium parvum-infected mice.

Zhao GH, Fang YQ, Ryan U, Guo YX, Wu F, Du SZ, Chen DK, Lin Q.

Parasitol Res. 2016 Feb;115(2):879-87. doi: 10.1007/s00436-015-4831-2. Epub 2015 Nov 23.

PMID:
26593737
14.

Kinetics of Cryptosporidium parvum-specific cytokine responses in healing and nonhealing murine models of C. parvum infection.

Singh I, Theodos C, Li W, Tzipori S.

Parasitol Res. 2005 Oct;97(4):309-17. Epub 2005 Jul 29.

PMID:
16052360
15.

Adoptive transfer of protective immunity from Cryptosporidium parvum-infected interferon-gamma and interleukin-12-deficient mice to naive recipients.

Tessema TS, Dauber E, Petry F.

Vaccine. 2009 Nov 5;27(47):6575-81. doi: 10.1016/j.vaccine.2009.08.036. Epub 2009 Aug 28.

PMID:
19717136
16.

TLR4 promotes Cryptosporidium parvum clearance in a mouse model of biliary cryptosporidiosis.

O'Hara SP, Bogert PS, Trussoni CE, Chen X, LaRusso NF.

J Parasitol. 2011 Oct;97(5):813-21. doi: 10.1645/GE-2703.1. Epub 2011 Mar 23.

17.

Activation of dendritic cells by low molecular weight oyster polysaccharides.

Zhong M, Zhong C, Wang T, Hu P, Wang G, Ren R, Zhang J, Gao H, Cui W, Duan W, Che J.

Int Immunopharmacol. 2017 Mar;44:183-190. doi: 10.1016/j.intimp.2017.01.018. Epub 2017 Jan 19.

PMID:
28110064
18.

Central role of MyD88-dependent dendritic cell maturation and proinflammatory cytokine production to control Brucella abortus infection.

Macedo GC, Magnani DM, Carvalho NB, Bruna-Romero O, Gazzinelli RT, Oliveira SC.

J Immunol. 2008 Jan 15;180(2):1080-7.

19.

Induction of dendritic cell maturation by pertussis toxin and its B subunit differentially initiate Toll-like receptor 4-dependent signal transduction pathways.

Wang ZY, Yang D, Chen Q, Leifer CA, Segal DM, Su SB, Caspi RR, Howard ZO, Oppenheim JJ.

Exp Hematol. 2006 Aug;34(8):1115-24.

PMID:
16863919
20.

Cryptosporidium parvum: the contribution of Th1-inducing pathways to the resolution of infection in mice.

Ehigiator HN, McNair N, Mead JR.

Exp Parasitol. 2007 Feb;115(2):107-13. Epub 2006 Aug 22.

PMID:
16920103

Supplemental Content

Support Center