Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 165

1.

Ultrasonic preparation of hierarchical graphene-oxide/TiO2 composite microspheres for efficient photocatalytic hydrogen production.

Gao P, Sun DD.

Chem Asian J. 2013 Nov;8(11):2779-86. doi: 10.1002/asia.201300565. Epub 2013 Aug 1.

PMID:
23913441
2.

Synthesis of GO supported Fe2O3-TiO2 nanocomposites for enhanced visible-light photocatalytic applications.

Jo WK, Selvam NC.

Dalton Trans. 2015 Sep 28;44(36):16024-35. doi: 10.1039/c5dt02983j.

PMID:
26286295
3.

TiO₂ nanoparticles-functionalized N-doped graphene with superior interfacial contact and enhanced charge separation for photocatalytic hydrogen generation.

Mou Z, Wu Y, Sun J, Yang P, Du Y, Lu C.

ACS Appl Mater Interfaces. 2014 Aug 27;6(16):13798-806. doi: 10.1021/am503244w. Epub 2014 Aug 12.

PMID:
25078680
4.

Photocatalytic synthesis of TiO(2) and reduced graphene oxide nanocomposite for lithium ion battery.

Qiu J, Zhang P, Ling M, Li S, Liu P, Zhao H, Zhang S.

ACS Appl Mater Interfaces. 2012 Jul 25;4(7):3636-42. doi: 10.1021/am300722d. Epub 2012 Jul 10.

PMID:
22738305
5.

Dye-sensitization-induced visible-light reduction of graphene oxide for the enhanced TiO2 photocatalytic performance.

Wang P, Wang J, Ming T, Wang X, Yu H, Yu J, Wang Y, Lei M.

ACS Appl Mater Interfaces. 2013 Apr 24;5(8):2924-9. doi: 10.1021/am4008566. Epub 2013 Apr 3.

PMID:
23534830
6.

Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles.

Xiang Q, Yu J, Jaroniec M.

J Am Chem Soc. 2012 Apr 18;134(15):6575-8. doi: 10.1021/ja302846n. Epub 2012 Apr 4.

PMID:
22458309
7.

Enhanced photocatalytic H₂-production activity of graphene-modified titania nanosheets.

Xiang Q, Yu J, Jaroniec M.

Nanoscale. 2011 Sep 1;3(9):3670-8. doi: 10.1039/c1nr10610d. Epub 2011 Aug 8.

PMID:
21826308
8.

Graphene oxide-CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation.

Gao P, Liu J, Sun DD, Ng W.

J Hazard Mater. 2013 Apr 15;250-251:412-20. doi: 10.1016/j.jhazmat.2013.02.003. Epub 2013 Feb 11.

PMID:
23500421
9.

Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p-n heterojunction for increased hydrogen production.

Babu SG, Vinoth R, Kumar DP, Shankar MV, Chou HL, Vinodgopal K, Neppolian B.

Nanoscale. 2015 May 7;7(17):7849-57. doi: 10.1039/c5nr00504c.

PMID:
25853995
10.

Graphene oxide capturing surface-fluorinated TiO2 nanosheets for advanced photocatalysis and the reveal of synergism reinforce mechanism.

Dai K, Lu L, Liu Q, Zhu G, Liu Q, Liu Z.

Dalton Trans. 2014 Feb 7;43(5):2202-10. doi: 10.1039/c3dt52542b.

PMID:
24292253
11.

One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties.

Gu L, Wang J, Cheng H, Zhao Y, Liu L, Han X.

ACS Appl Mater Interfaces. 2013 Apr 24;5(8):3085-93. doi: 10.1021/am303274t. Epub 2013 Apr 10.

PMID:
23527869
12.

Two-dimensional interface engineering of a titania-graphene nanosheet composite for improved photocatalytic activity.

Sun J, Zhang H, Guo LH, Zhao L.

ACS Appl Mater Interfaces. 2013 Dec 26;5(24):13035-41. doi: 10.1021/am403937y. Epub 2013 Dec 12.

PMID:
24308534
13.

Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method.

Sang Y, Zhao Z, Tian J, Hao P, Jiang H, Liu H, Claverie JP.

Small. 2014 Sep 24;10(18):3775-82. doi: 10.1002/smll.201303489. Epub 2014 May 30.

PMID:
24888721
14.

Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets.

Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR.

J Am Chem Soc. 2011 Jul 20;133(28):10878-84. doi: 10.1021/ja2025454. Epub 2011 Jun 24.

PMID:
21639097
15.

N-doped P25 TiO2-amorphous Al2O3 composites: one-step solution combustion preparation and enhanced visible-light photocatalytic activity.

Li FT, Zhao Y, Hao YJ, Wang XJ, Liu RH, Zhao DS, Chen DM.

J Hazard Mater. 2012 Nov 15;239-240:118-27. doi: 10.1016/j.jhazmat.2012.08.016. Epub 2012 Aug 14.

PMID:
23021102
16.

Engineering the TiO2 -graphene interface to enhance photocatalytic H2 production.

Liu L, Liu Z, Liu A, Gu X, Ge C, Gao F, Dong L.

ChemSusChem. 2014 Feb;7(2):618-26. doi: 10.1002/cssc.201300941. Epub 2013 Dec 9.

PMID:
24323576
17.
18.

TiO2-graphene composites with exposed {001} facets produced by a one-pot solvothermal approach for high performance photocatalyst.

Lu T, Zhang R, Hu C, Chen F, Duo S, Hu Q.

Phys Chem Chem Phys. 2013 Aug 21;15(31):12963-70. doi: 10.1039/c3cp50942g.

PMID:
23817326
19.

Single-step solvothermal synthesis of mesoporous Ag-TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity.

Sher Shah MS, Zhang K, Park AR, Kim KS, Park NG, Park JH, Yoo PJ.

Nanoscale. 2013 Jun 7;5(11):5093-101. doi: 10.1039/c3nr00579h. Epub 2013 May 3.

PMID:
23640656
20.

Photocatalytic antifouling graphene oxide-mediated hierarchical filtration membranes with potential applications on water purification.

Xu C, Xu Y, Zhu J.

ACS Appl Mater Interfaces. 2014 Sep 24;6(18):16117-23. doi: 10.1021/am5040945. Epub 2014 Sep 2.

PMID:
25148296

Supplemental Content

Support Center