Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Contributions of citrate in redox potential maintenance and ATP production: metabolic pathways and their regulation in Lactobacillus panis PM1.

Kang TS, Korber DR, Tanaka T.

Appl Microbiol Biotechnol. 2013 Oct;97(19):8693-703. doi: 10.1007/s00253-013-5108-2. Epub 2013 Aug 4.

PMID:
23912115
2.

Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1.

Kang TS, Korber DR, Tanaka T.

AMB Express. 2013 Jan 31;3(1):10. doi: 10.1186/2191-0855-3-10.

3.

Isolation and characterization of novel 1,3-propanediol-producing Lactobacillus panis PM1 from bioethanol thin stillage.

Khan NH, Kang TS, Grahame DA, Haakensen MC, Ratanapariyanuch K, Reaney MJ, Korber DR, Tanaka T.

Appl Microbiol Biotechnol. 2013 Jan;97(1):417-28. doi: 10.1007/s00253-012-4386-4. Epub 2012 Oct 18.

PMID:
23076589
4.

Regulation of dual glycolytic pathways for fructose metabolism in heterofermentative Lactobacillus panis PM1.

Kang TS, Korber DR, Tanaka T.

Appl Environ Microbiol. 2013 Dec;79(24):7818-26. doi: 10.1128/AEM.02377-13. Epub 2013 Oct 4.

5.

Glycerol and environmental factors: effects on 1,3-propanediol production and NAD(+) regeneration in Lactobacillus panis PM1.

Kang TS, Korber DR, Tanaka T.

J Appl Microbiol. 2013 Oct;115(4):1003-11. doi: 10.1111/jam.12291. Epub 2013 Jul 19.

6.

Transcriptional repressor role of PocR on the 1,3-propanediol biosynthetic pathway by Lactobacillus panis PM1.

Kang TS, Korber DR, Tanaka T.

Biotechnol Lett. 2014 Jun;36(6):1263-9. doi: 10.1007/s10529-014-1477-6. Epub 2014 Feb 22.

PMID:
24563308
7.
8.

Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions.

Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H.

J Mol Microbiol Biotechnol. 2004;7(4):182-96.

PMID:
15383716
9.

Citrate catabolism and production of acetate and succinate by Lactobacillus helveticus ATCC 15807.

Torino MI, Taranto MP, Font de Valdez G.

Appl Microbiol Biotechnol. 2005 Nov;69(1):79-85. Epub 2005 Oct 20.

PMID:
15770479
10.

Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C.

Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO.

Biotechnol Bioeng. 2008 Dec 1;101(5):881-93. doi: 10.1002/bit.22005.

PMID:
18781696
11.

Sugar-glycerol cofermentations in lactobacilli: the fate of lactate.

Veiga da Cunha M, Foster MA.

J Bacteriol. 1992 Feb;174(3):1013-9.

12.

Glycerol metabolism of Lactobacillus rhamnosus ATCC 7469: cloning and expression of two glycerol kinase genes.

Alvarez Mde F, Medina R, Pasteris SE, Strasser de Saad AM, Sesma F.

J Mol Microbiol Biotechnol. 2004;7(4):170-81.

PMID:
15383715
14.
15.

Metabolic engineering of Escherichia coli for the production of succinate from glycerol.

Blankschien MD, Clomburg JM, Gonzalez R.

Metab Eng. 2010 Sep;12(5):409-19. doi: 10.1016/j.ymben.2010.06.002. Epub 2010 Jun 22.

PMID:
20601068
16.

The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli.

Zhu J, Shimizu K.

Appl Microbiol Biotechnol. 2004 Apr;64(3):367-75. Epub 2003 Dec 12.

PMID:
14673546
17.
18.
19.

Influence of temperature on flavour compound production from citrate by Lactobacillus rhamnosus ATCC 7469.

De Figueroa RM, Oliver G, Benito de Cárdenas IL.

Microbiol Res. 2001 Mar;155(4):257-62.

PMID:
11297355
20.

Regulation of NAD(H) pool and NADH/NAD(+) ratio by overexpression of nicotinic acid phosphoribosyltransferase for succinic acid production in Escherichia coli NZN111.

Liang L, Liu R, Wang G, Gou D, Ma J, Chen K, Jiang M, Wei P, Ouyang P.

Enzyme Microb Technol. 2012 Oct 10;51(5):286-93. doi: 10.1016/j.enzmictec.2012.07.011. Epub 2012 Jul 28.

PMID:
22975127

Supplemental Content

Support Center