Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 240

1.

Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications.

Gordin DM, Busardo D, Cimpean A, Vasilescu C, Höche D, Drob SI, Mitran V, Cornen M, Gloriant T.

Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):4173-82. doi: 10.1016/j.msec.2013.06.008. Epub 2013 Jun 13.

PMID:
23910330
2.

Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.

Yeung KW, Poon RW, Chu PK, Chung CY, Liu XY, Lu WW, Chan D, Chan SC, Luk KD, Cheung KM.

J Biomed Mater Res A. 2007 Aug;82(2):403-14.

PMID:
17295246
3.

Surface characterization and biocompatibility of titanium alloys implanted with nitrogen by Hardion+ technology.

Gordin DM, Gloriant T, Chane-Pane V, Busardo D, Mitran V, Höche D, Vasilescu C, Drob SI, Cimpean A.

J Mater Sci Mater Med. 2012 Dec;23(12):2953-66. doi: 10.1007/s10856-012-4750-z. Epub 2012 Aug 24.

PMID:
22918550
4.

Superelasticity, corrosion resistance and biocompatibility of the Ti-19Zr-10Nb-1Fe alloy.

Xue P, Li Y, Li K, Zhang D, Zhou C.

Mater Sci Eng C Mater Biol Appl. 2015 May;50:179-86. doi: 10.1016/j.msec.2015.02.004. Epub 2015 Feb 8.

PMID:
25746260
5.

Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation.

Guan RG, Cipriano AF, Zhao ZY, Lock J, Tie D, Zhao T, Cui T, Liu H.

Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):3661-9. doi: 10.1016/j.msec.2013.04.054. Epub 2013 May 3.

PMID:
23910262
6.

Effect of temperature on surface characteristics of nitrogen ion implanted biocompatible titanium.

Aghajani H, Motlagh MS.

J Mater Sci Mater Med. 2017 Feb;28(2):29. doi: 10.1007/s10856-016-5843-x. Epub 2017 Jan 20.

PMID:
28108957
7.

Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility.

Zhou FY, Qiu KJ, Li HF, Huang T, Wang BL, Li L, Zheng YF.

Acta Biomater. 2013 Dec;9(12):9578-87. doi: 10.1016/j.actbio.2013.07.035. Epub 2013 Aug 6.

PMID:
23928334
8.

Enhancement of the electrochemical behaviour and biological performance of Ti-25Ta-5Zr alloy by thermo-mechanical processing.

Cimpean A, Vasilescu E, Drob P, Cinca I, Vasilescu C, Anastasescu M, Mitran V, Drob SI.

Mater Sci Eng C Mater Biol Appl. 2014 May 1;38:127-42. doi: 10.1016/j.msec.2014.01.056. Epub 2014 Feb 7.

PMID:
24656361
9.

Potentiality of the "Gum Metal" titanium-based alloy for biomedical applications.

Gordin DM, Ion R, Vasilescu C, Drob SI, Cimpean A, Gloriant T.

Mater Sci Eng C Mater Biol Appl. 2014 Nov;44:362-70. doi: 10.1016/j.msec.2014.08.003. Epub 2014 Aug 7.

PMID:
25280716
10.

New Ni-free superelastic alloy for orthodontic applications.

Arciniegas M, Manero JM, Espinar E, Llamas JM, Barrera JM, Gil FJ.

Mater Sci Eng C Mater Biol Appl. 2013 Aug 1;33(6):3325-8. doi: 10.1016/j.msec.2013.04.014. Epub 2013 Apr 11.

PMID:
23706217
11.

Ti-TiC-TiC/DLC gradient nano-composite film on a biomedical NiTi alloy.

Zheng Y, Liu D, Liu X, Li L.

Biomed Mater. 2008 Dec;3(4):044103. doi: 10.1088/1748-6041/3/4/044103. Epub 2008 Nov 25.

PMID:
19029600
12.

Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite.

Bornapour M, Muja N, Shum-Tim D, Cerruti M, Pekguleryuz M.

Acta Biomater. 2013 Feb;9(2):5319-30. doi: 10.1016/j.actbio.2012.07.045. Epub 2012 Aug 5.

PMID:
22871640
13.

XPS study of bioactive graded layer in Ti-In-Nb-Ta alloy prepared by alkali and heat treatments.

Lee BH, Kim YD, Lee KH.

Biomaterials. 2003 Jun;24(13):2257-66.

PMID:
12699662
14.

Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys.

Zhao Y, Jamesh MI, Li WK, Wu G, Wang C, Zheng Y, Yeung KW, Chu PK.

Acta Biomater. 2014 Jan;10(1):544-56. doi: 10.1016/j.actbio.2013.10.012. Epub 2013 Oct 18.

PMID:
24140607
15.

Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti-Bi alloys developed for dental applications.

Qiu KJ, Liu Y, Zhou FY, Wang BL, Li L, Zheng YF, Liu YH.

Acta Biomater. 2015 Mar;15:254-65. doi: 10.1016/j.actbio.2015.01.009. Epub 2015 Jan 14.

PMID:
25595472
16.

Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts.

Bordji K, Jouzeau JY, Mainard D, Payan E, Netter P, Rie KT, Stucky T, Hage-Ali M.

Biomaterials. 1996 May;17(9):929-40.

PMID:
8718939
17.

Corrosion resistance, surface mechanical properties, and cytocompatibility of plasma immersion ion implantation-treated nickel-titanium shape memory alloys.

Yeung KW, Poon RW, Liu XY, Ho JP, Chung CY, Chu PK, Lu WW, Chan D, Cheung KM.

J Biomed Mater Res A. 2005 Nov 1;75(2):256-67.

PMID:
16078209
18.

Wear and friction properties of experimental Ti-Si-Zr alloys for biomedical applications.

Tkachenko S, Datskevich O, Kulak L, Jacobson S, Engqvist H, Persson C.

J Mech Behav Biomed Mater. 2014 Nov;39:61-72. doi: 10.1016/j.jmbbm.2014.07.011. Epub 2014 Jul 23.

PMID:
25105238
19.

Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.

Li X, Chen T, Hu J, Li S, Zou Q, Li Y, Jiang N, Li H, Li J.

Colloids Surf B Biointerfaces. 2016 Aug 1;144:265-275. doi: 10.1016/j.colsurfb.2016.04.020. Epub 2016 Apr 13.

PMID:
27100853
20.

In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys.

Ito A, Okazaki Y, Tateishi T, Ito Y.

J Biomed Mater Res. 1995 Jul;29(7):893-9.

PMID:
7593029

Supplemental Content

Support Center