Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 296

1.

Enhanced photodynamic efficiency of an aptamer-guided fullerene photosensitizer toward tumor cells.

Liu Q, Xu L, Zhang X, Li N, Zheng J, Guan M, Fang X, Wang C, Shu C.

Chem Asian J. 2013 Oct;8(10):2370-6. doi: 10.1002/asia.201300039.

PMID:
23907978
2.

Structural effect and mechanism of C70-carboxyfullerenes as efficient sensitizers against cancer cells.

Liu Q, Guan M, Xu L, Shu C, Jin C, Zheng J, Fang X, Yang Y, Wang C.

Small. 2012 Jul 9;8(13):2070-7. doi: 10.1002/smll.201200158.

PMID:
22508680
3.

Effect and mechanism of a new photodynamic therapy with glycoconjugated fullerene.

Otake E, Sakuma S, Torii K, Maeda A, Ohi H, Yano S, Morita A.

Photochem Photobiol. 2010 Nov-Dec;86(6):1356-63. doi: 10.1111/j.1751-1097.2010.00790.x.

PMID:
20796243
4.

A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy.

Shi J, Liu Y, Wang L, Gao J, Zhang J, Yu X, Ma R, Liu R, Zhang Z.

Acta Biomater. 2014 Mar;10(3):1280-91. doi: 10.1016/j.actbio.2013.10.037.

PMID:
24211343
5.

C-MYC and C-FOS expression changes and cellular aspects of the photodynamic reaction with photosensitizers TMPyP and ClAlPcS2.

Pizova K, Bajgar R, Fillerova R, Kriegova E, Cenklova V, Langova K, Konecny P, Kolarova H.

J Photochem Photobiol B. 2015 Jan;142:186-96. doi: 10.1016/j.jphotobiol.2014.12.003.

PMID:
25545333
6.

Photodynamic therapy with fullerenes in vivo: reality or a dream?

Sharma SK, Chiang LY, Hamblin MR.

Nanomedicine (Lond). 2011 Dec;6(10):1813-25. doi: 10.2217/nnm.11.144.

7.

Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy.

Khdair A, Gerard B, Handa H, Mao G, Shekhar MP, Panyam J.

Mol Pharm. 2008 Sep-Oct;5(5):795-807. doi: 10.1021/mp800026t.

PMID:
18646775
8.

Preparation and characterization of fullerene (C60) amino acid nanoparticles for liver cancer cell treatment.

Li Z, Pan LL, Zhang FL, Wang Z, Shen YY, Zhang ZZ.

J Nanosci Nanotechnol. 2014 Jun;14(6):4513-8.

PMID:
24738422
9.

Special reactive oxygen species generation by a highly photostable BODIPY-based photosensitizer for selective photodynamic therapy.

Lai YC, Su SY, Chang CC.

ACS Appl Mater Interfaces. 2013 Dec 26;5(24):12935-43. doi: 10.1021/am403593m.

PMID:
24313397
10.

Photodynamic Therapy with Blended Conducting Polymer/Fullerene Nanoparticle Photosensitizers.

Doshi M, Gesquiere AJ.

J Vis Exp. 2015 Oct 28;(105):e53038. doi: 10.3791/53038.

PMID:
26556528
11.

Angiogenin-mediated photosensitizer-aptamer conjugate for photodynamic therapy.

Yang X, Huang J, Wang K, Li W, Cui L, Li X.

ChemMedChem. 2011 Oct 4;6(10):1778-80. doi: 10.1002/cmdc.201100226. No abstract available.

PMID:
21774079
12.

The in vitro photodynamic effect of laser activated gallium, indium and iron phthalocyanine chlorides on human lung adenocarcinoma cells.

Maduray K, Odhav B.

J Photochem Photobiol B. 2013 Nov 5;128:58-63. doi: 10.1016/j.jphotobiol.2013.08.003.

PMID:
24007866
13.

Study of the photodynamic effect on the A549 cell line by atomic force microscopy and the influence of green tea extract on the production of reactive oxygen species.

Tomankova K, Kolarova H, Bajgar R, Jirova D, Kejlova K, Mosinger J.

Ann N Y Acad Sci. 2009 Aug;1171:549-58. doi: 10.1111/j.1749-6632.2009.04730.x.

PMID:
19723103
14.

Evaluation of photodynamic therapy (PDT) procedures using microfluidic system.

Jedrych E, Pawlicka Z, Chudy M, Dybko A, Brzozka Z.

Anal Chim Acta. 2011 Jan 10;683(2):149-55. doi: 10.1016/j.aca.2010.10.005.

PMID:
21167965
15.

Cytotoxicity and photocytotoxicity of structure-defined water-soluble C60/micelle supramolecular nanoparticles.

Metanawin T, Tang T, Chen R, Vernon D, Wang X.

Nanotechnology. 2011 Jun 10;22(23):235604. doi: 10.1088/0957-4484/22/23/235604.

PMID:
21483045
16.

Modulation of photosensitization processes for an improved targeted photodynamic therapy.

Verhille M, Couleaud P, Vanderesse R, Brault D, Barberi-Heyob M, Frochot C.

Curr Med Chem. 2010;17(32):3925-43. Review.

PMID:
20858211
17.

Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy.

Wang M, Chen Z, Zheng W, Zhu H, Lu S, Ma E, Tu D, Zhou S, Huang M, Chen X.

Nanoscale. 2014 Jul 21;6(14):8274-82. doi: 10.1039/c4nr01826e.

PMID:
24933297
18.
19.

UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway.

Hou Z, Zhang Y, Deng K, Chen Y, Li X, Deng X, Cheng Z, Lian H, Li C, Lin J.

ACS Nano. 2015 Mar 24;9(3):2584-99. doi: 10.1021/nn506107c.

PMID:
25692960
20.

Targeted Photodynamic Virotherapy Armed with a Genetically Encoded Photosensitizer.

Takehara K, Tazawa H, Okada N, Hashimoto Y, Kikuchi S, Kuroda S, Kishimoto H, Shirakawa Y, Narii N, Mizuguchi H, Urata Y, Kagawa S, Fujiwara T.

Mol Cancer Ther. 2016 Jan;15(1):199-208. doi: 10.1158/1535-7163.MCT-15-0344.

Items per page

Supplemental Content

Support Center