Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 86

1.

One site is enough: a theoretical investigation of iron-catalyzed dehydrogenation of formic Acid.

Sánchez-de-Armas R, Xue L, Ahlquist MS.

Chemistry. 2013 Sep 2;19(36):11869-73. doi: 10.1002/chem.201301970. Epub 2013 Jul 31.

PMID:
23907850
2.
3.

Base-free non-noble-metal-catalyzed hydrogen generation from formic acid: scope and mechanistic insights.

Mellmann D, Barsch E, Bauer M, Grabow K, Boddien A, Kammer A, Sponholz P, Bentrup U, Jackstell R, Junge H, Laurenczy G, Ludwig R, Beller M.

Chemistry. 2014 Oct 13;20(42):13589-602. doi: 10.1002/chem.201403602. Epub 2014 Sep 4.

PMID:
25196789
4.

Iron-catalyzed hydrogen production from formic acid.

Boddien A, Loges B, Gärtner F, Torborg C, Fumino K, Junge H, Ludwig R, Beller M.

J Am Chem Soc. 2010 Jul 7;132(26):8924-34. doi: 10.1021/ja100925n.

PMID:
20550131
5.

Mechanisms for dehydrogenation and hydrogenation of N-heterocycles using PNP-pincer-supported iron catalysts: a density functional study.

Sawatlon B, Surawatanawong P.

Dalton Trans. 2016 Oct 14;45(38):14965-78. doi: 10.1039/c6dt02431a. Epub 2016 Aug 23.

PMID:
27550424
6.

Computational Study of Formic Acid Dehydrogenation Catalyzed by Al(III)-Bis(imino)pyridine.

Lu QQ, Yu HZ, Fu Y.

Chemistry. 2016 Mar 18;22(13):4584-91. doi: 10.1002/chem.201504573. Epub 2016 Feb 16.

PMID:
26879469
7.

Efficient disproportionation of formic acid to methanol using molecular ruthenium catalysts.

Savourey S, Lefèvre G, Berthet JC, Thuéry P, Genre C, Cantat T.

Angew Chem Int Ed Engl. 2014 Sep 22;53(39):10466-70. doi: 10.1002/anie.201405457. Epub 2014 Aug 1.

PMID:
25088282
8.

Computational Design of Cobalt Catalysts for Hydrogenation of Carbon Dioxide and Dehydrogenation of Formic Acid.

Ge H, Jing Y, Yang X.

Inorg Chem. 2016 Dec 5;55(23):12179-12184. Epub 2016 Nov 16.

PMID:
27934414
9.

Theoretical investigation of the selective dehydration and dehydrogenation of ethanol catalyzed by small molecules.

Wang Y, Tang Y, Shao Y.

J Mol Graph Model. 2017 May 17. pii: S1093-3263(17)30237-1. doi: 10.1016/j.jmgm.2017.05.009. [Epub ahead of print]

PMID:
28629707
11.

Mechanistic studies of ammonia borane dehydrogenation catalyzed by iron pincer complexes.

Bhattacharya P, Krause JA, Guan H.

J Am Chem Soc. 2014 Aug 6;136(31):11153-61. doi: 10.1021/ja5058423. Epub 2014 Jul 29.

PMID:
25036653
12.
13.

Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

Fink C, Montandon-Clerc M, Laurenczy G.

Chimia (Aarau). 2015;69(12):746-52. doi: 10.2533/chimia.2015.746.

PMID:
26842324
15.

Density functional investigation of the water oxidation by iron complexes based on tetradentate nitrogen ligands.

Kasapbasi EE, Whangbo MH.

Inorg Chem. 2012 Oct 15;51(20):10850-5. doi: 10.1021/ic3013359. Epub 2012 Oct 1.

PMID:
23025899
16.
17.

Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N'-Diimine Ligand.

Guan C, Zhang DD, Pan Y, Iguchi M, Ajitha MJ, Hu J, Li H, Yao C, Huang MH, Min S, Zheng J, Himeda Y, Kawanami H, Huang KW.

Inorg Chem. 2017 Jan 3;56(1):438-445. doi: 10.1021/acs.inorgchem.6b02334. Epub 2016 Dec 16.

PMID:
27983821
18.

Theoretical study on the mechanism of aqueous synthesis of formic acid catalyzed by [Ru3+]-EDTA complex.

Chen ZN, Chan KY, Pulleri JK, Kong J, Hu H.

Inorg Chem. 2015 Feb 16;54(4):1314-24. doi: 10.1021/ic5021127. Epub 2015 Feb 3.

PMID:
25646570
19.

Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst.

Bielinski EA, Lagaditis PO, Zhang Y, Mercado BQ, Würtele C, Bernskoetter WH, Hazari N, Schneider S.

J Am Chem Soc. 2014 Jul 23;136(29):10234-7. doi: 10.1021/ja505241x. Epub 2014 Jul 10.

PMID:
24999607
20.

A QM/MM investigation of the activation and catalytic mechanism of Fe-only hydrogenases.

Greco C, Bruschi M, De Gioia L, Ryde U.

Inorg Chem. 2007 Jul 23;46(15):5911-21. Epub 2007 Jun 29.

PMID:
17602468

Supplemental Content

Support Center