Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 151

1.

Engineering the thermostability of a xylanase from Aspergillus oryzae by an enhancement of the interactions between the N-terminus extension and the β-sheet A2 of the enzyme.

Chen Z, Zhang H, Wang J, Tang C, Wu J, Wu M.

Biotechnol Lett. 2013 Dec;35(12):2073-9. doi: 10.1007/s10529-013-1298-z. Epub 2013 Aug 2.

PMID:
23907668
2.

[Effect of N-terminal disulfide bridge on thermostability of family 11 xylanases].

Gao S, Wang J, Wu M, Tang C, Wu J.

Sheng Wu Gong Cheng Xue Bao. 2012 Dec;28(12):1441-9. Chinese.

PMID:
23593868
3.

Enhanced thermostability of a mesophilic xylanase by N-terminal replacement designed by molecular dynamics simulation.

Yin X, Li JF, Wang JQ, Tang CD, Wu MC.

J Sci Food Agric. 2013 Sep;93(12):3016-23. doi: 10.1002/jsfa.6134. Epub 2013 Apr 19.

PMID:
23512640
4.

Engineering hyperthermostability into a mesophilic family 11 xylanase from Aspergillus oryzae by in silico design of N-terminus substitution.

Gao SJ, Wang JQ, Wu MC, Zhang HM, Yin X, Li JF.

Biotechnol Bioeng. 2013 Apr;110(4):1028-38. doi: 10.1002/bit.24768. Epub 2012 Nov 1.

PMID:
23097144
5.

[Correlation between thermostability of the xylanase EvXyn11(TS) and its N-terminal disulfide bridge].

Min R, Li J, Gao S, Zhang H, Wu J, Wu M.

Wei Sheng Wu Xue Bao. 2013 Apr 4;53(4):346-52. Chinese.

PMID:
23858709
6.

Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by N-terminus replacement.

Sun JY, Liu MQ, Xu YL, Xu ZR, Pan L, Gao H.

Protein Expr Purif. 2005 Jul;42(1):122-30. Epub 2005 Mar 30.

PMID:
15939297
7.

Five mutations in N-terminus confer thermostability on mesophilic xylanase.

Zhang S, Zhang K, Chen X, Chu X, Sun F, Dong Z.

Biochem Biophys Res Commun. 2010 Apr 30;395(2):200-6. doi: 10.1016/j.bbrc.2010.03.159. Epub 2010 Mar 31.

PMID:
20361933
8.

Purification and characterization of a thermostable hypothetical xylanase from Aspergillus oryzae HML366.

He H, Qin Y, Li N, Chen G, Liang Z.

Appl Biochem Biotechnol. 2015 Mar;175(6):3148-61. doi: 10.1007/s12010-014-1352-x. Epub 2015 Jan 22.

PMID:
25604952
9.

Cloning and expression of a family 10 xylanase gene (Aoxyn10) from Aspergillus oryzae in Pichia pastoris.

Yin X, Gong YY, Wang JQ, Tang CD, Wu MC.

J Gen Appl Microbiol. 2013;59(6):405-15.

10.

Exploration of disulfide bridge and N-glycosylation contributing to high thermostability of a hybrid xylanase.

Tan Z, Tang C, Wu M, He Y, Hu D, Wang J.

Protein Pept Lett. 2014 Jul;21(7):657-62.

PMID:
24693954
11.

C-Terminal carbohydrate-binding module 9_2 fused to the N-terminus of GH11 xylanase from Aspergillus niger.

Xu W, Liu Y, Ye Y, Liu M, Han L, Song A, Liu L.

Biotechnol Lett. 2016 Oct;38(10):1739-45. doi: 10.1007/s10529-016-2149-5. Epub 2016 Jun 16.

PMID:
27311309
12.

[Enhancing stability of Trichoderma reesei xylanase (XYN II) by site-directed mutagenesis].

Han C, Yu S, Ouyang J, Li X, Zhou J, Xu Y.

Sheng Wu Gong Cheng Xue Bao. 2010 May;26(5):623-9. Chinese.

PMID:
20684306
13.

Construction of Thermophilic Xylanase and Its Structural Analysis.

Watanabe M, Fukada H, Ishikawa K.

Biochemistry. 2016 Aug 9;55(31):4399-409. doi: 10.1021/acs.biochem.6b00414. Epub 2016 Jul 29.

PMID:
27410423
14.

Thermostabilization of extremophilic Dictyoglomus thermophilum GH11 xylanase by an N-terminal disulfide bridge and the effect of ionic liquid [emim]OAc on the enzymatic performance.

Li H, Kankaanpää A, Xiong H, Hummel M, Sixta H, Ojamo H, Turunen O.

Enzyme Microb Technol. 2013 Dec 10;53(6-7):414-9. doi: 10.1016/j.enzmictec.2013.09.004. Epub 2013 Sep 19. Erratum in: Enzyme Microb Technol. 2014 Feb 5;55:170.

PMID:
24315645
15.

Impact of an N-terminal extension on the stability and activity of the GH11 xylanase from Thermobacillus xylanilyticus.

Song L, Dumon C, Siguier B, André I, Eneyskaya E, Kulminskaya A, Bozonnet S, O'Donohue MJ.

J Biotechnol. 2014 Mar 20;174:64-72. doi: 10.1016/j.jbiotec.2014.01.004. Epub 2014 Jan 15.

PMID:
24440633
16.

[Improvement of the thermostability of xylanase by N-terminus replacement].

Yang HM, Meng K, Luo HY, Wang YR, Yuan TZ, Bai YG, Yao B, Fan YL.

Sheng Wu Gong Cheng Xue Bao. 2006 Jan;22(1):26-32. Chinese.

PMID:
16572836
17.

A unique disulfide bridge of the thermophilic xylanase SyXyn11 plays a key role in its thermostability.

Yin X, Yao Y, Wu MC, Zhu TD, Zeng Y, Pang QF.

Biochemistry (Mosc). 2014 Jun;79(6):531-7. doi: 10.1134/S0006297914060066.

PMID:
25100011
18.

Domain-swapping of mesophilic xylanase with hyper-thermophilic glucanase.

Liu L, Wang L, Zhang Z, Guo X, Li X, Chen H.

BMC Biotechnol. 2012 Jun 7;12:28. doi: 10.1186/1472-6750-12-28.

19.

Exploration of a N-terminal disulfide bridge to improve the thermostability of a GH11 xylanase from Aspergillus niger.

Zhou CY, Li TB, Wang YT, Zhu XS, Kang J.

J Gen Appl Microbiol. 2016;62(2):83-9. doi: 10.2323/jgam.62.83.

20.

Residue mutations of xylanase in Aspergillus kawachii alter its optimum pH.

Qiu J, Han H, Sun B, Chen L, Yu C, Peng R, Yao Q.

Microbiol Res. 2016 Jan;182:1-7. doi: 10.1016/j.micres.2015.09.002. Epub 2015 Sep 10.

Supplemental Content

Support Center