Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 195

1.

Non-antireflective scheme for efficiency enhancement of Cu(In,Ga)Se2 nanotip array solar cells.

Liao YK, Wang YC, Yen YT, Chen CH, Hsieh DH, Chen SC, Lee CY, Lai CC, Kuo WC, Juang JY, Wu KH, Cheng SJ, Lai CH, Lai FI, Kuo SY, Kuo HC, Chueh YL.

ACS Nano. 2013 Aug 27;7(8):7318-29. doi: 10.1021/nn402976b. Epub 2013 Aug 19.

PMID:
23906340
2.

Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell.

Liu CH, Chen CH, Chen SY, Yen YT, Kuo WC, Liao YK, Juang JY, Kuo HC, Lai CH, Chen LJ, Chueh YL.

Nano Lett. 2011 Oct 12;11(10):4443-8. doi: 10.1021/nl202673k. Epub 2011 Sep 19.

PMID:
21910452
3.

Cd-free CIGS solar cells with buffer layer based on the In2S3 derivatives.

Kim K, Larina L, Yun JH, Yoon KH, Kwon H, Ahn BT.

Phys Chem Chem Phys. 2013 Jun 21;15(23):9239-44. doi: 10.1039/c3cp50324k. Epub 2013 May 8.

PMID:
23657475
4.

Structural, Electrical, and Optical Properties of ZnO Film Used as Buffer Layer for CIGS Thin-Film Solar Cell.

Choi EC, Cha JH, Jung DY, Hong B.

J Nanosci Nanotechnol. 2016 May;16(5):5087-91.

PMID:
27483877
5.

Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells.

Vermang B, Wätjen JT, Fjällström V, Rostvall F, Edoff M, Kotipalli R, Henry F, Flandre D.

Prog Photovolt. 2014 Oct;22(10):1023-1029. Epub 2014 Jul 2.

6.

Design of energy band alignment at the Zn(1-x)Mg(x)O/Cu(In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells.

Lee CS, Larina L, Shin YM, Al-Ammar EA, Ahn BT.

Phys Chem Chem Phys. 2012 Apr 14;14(14):4789-95. doi: 10.1039/c2cp40355b. Epub 2012 Mar 1.

PMID:
22382807
7.

A Comprehensive Study of One-Step Selenization Process for Cu(In1-x Ga x )Se2 Thin Film Solar Cells.

Chen SC, Wang SW, Kuo SY, Juang JY, Lee PT, Luo CW, Wu KH, Kuo HC.

Nanoscale Res Lett. 2017 Dec;12(1):208. doi: 10.1186/s11671-017-1993-0. Epub 2017 Mar 21.

8.

Preparation of monolithic cu(In0.7Ga0.3)Se2 nanopowders and subsequent fabrication of sintered CIGS films.

Song BG, Jung JH, Bae GN, Park HH, Park JK, Cho SH.

J Nanosci Nanotechnol. 2013 Sep;13(9):6042-51.

PMID:
24205596
9.

Study of band structure at the Zn(S,O,OH)/Cu(In,Ga)Se2 interface via rapid thermal annealing and their effect on the photovoltaic properties.

Shin DH, Kim ST, Kim JH, Kang HJ, Ahn BT, Kwon H.

ACS Appl Mater Interfaces. 2013 Dec 26;5(24):12921-7. doi: 10.1021/am403488h. Epub 2013 Nov 15.

PMID:
24175717
10.

Near infrared enhancement in CIGS-based solar cells utilizing a ZnO:H window layer.

Yeh CL, Hsu HR, Chen SH, Liu YS.

Opt Express. 2012 Nov 5;20(23):A806-11.

PMID:
23326827
11.

Near infrared enhancement in CIGS-based solar cells utilizing a ZnO:H window layer.

Yeh CL, Hsu HR, Chen SH, Liu YS.

Opt Express. 2012 Nov 5;20 Suppl 6:A806-11. doi: 10.1364/OE.20.00A806.

PMID:
23187656
12.

Enhanced Conversion Efficiency of Cu(In,Ga)Se2 Solar Cells via Electrochemical Passivation Treatment.

Tsai HW, Thomas SR, Chen CW, Wang YC, Tsai HS, Yen YT, Hsu CH, Tsai WC, Wang ZM, Chueh YL.

ACS Appl Mater Interfaces. 2016 Mar;8(12):7777-82. doi: 10.1021/acsami.5b11863. Epub 2016 Mar 10.

PMID:
26815164
13.

Efficiency enhancement of non-selenized Cu(In,Ga)Se2 solar cells employing scalable low-cost antireflective coating.

Jheng BT, Liu PT, Wu MC.

Nanoscale Res Lett. 2014 Jul 4;9(1):331. doi: 10.1186/1556-276X-9-331. eCollection 2014.

14.

Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells.

Pianezzi F, Reinhard P, Chirilă A, Bissig B, Nishiwaki S, Buecheler S, Tiwari AN.

Phys Chem Chem Phys. 2014 May 21;16(19):8843-51. doi: 10.1039/c4cp00614c.

PMID:
24675872
15.

Si-Doping Effects in Cu(In,Ga)Se2 Thin Films and Applications for Simplified Structure High-Efficiency Solar Cells.

Ishizuka S, Koida T, Taguchi N, Tanaka S, Fons P, Shibata H.

ACS Appl Mater Interfaces. 2017 Sep 13;9(36):31119-31128. doi: 10.1021/acsami.7b09019. Epub 2017 Aug 30.

PMID:
28829112
16.

Highly efficient graphene-based Cu(In, Ga)Se₂ solar cells with large active area.

Yin L, Zhang K, Luo H, Cheng G, Ma X, Xiong Z, Xiao X.

Nanoscale. 2014 Sep 21;6(18):10879-86. doi: 10.1039/c4nr02988g. Epub 2014 Aug 13.

PMID:
25117579
17.

Characteristics of Ga-Rich Cu(In, Ga)Se2 Solar Cells Grown on Ga-Doped ZnO Back Contact.

Sun Q, Kim KB, Jeon CW.

J Nanosci Nanotechnol. 2016 May;16(5):5053-7.

PMID:
27483870
18.

Improved efficiency of a large-area Cu(In,Ga)Se₂ solar cell by a nontoxic hydrogen-assisted solid Se vapor selenization process.

Wu TT, Hu F, Huang JH, Chang CH, Lai CC, Yen YT, Huang HY, Hong HF, Wang ZM, Shen CH, Shieh JM, Chueh YL.

ACS Appl Mater Interfaces. 2014 Apr 9;6(7):4842-9. doi: 10.1021/am405780z. Epub 2014 Mar 20.

PMID:
24571825
19.

Electrical impact of MoSe2 on CIGS thin-film solar cells.

Hsiao KJ, Liu JD, Hsieh HH, Jiang TS.

Phys Chem Chem Phys. 2013 Nov 7;15(41):18174-8. doi: 10.1039/c3cp53310g.

PMID:
24068110
20.

Photovoltaic Performance and Interface Behaviors of Cu(In,Ga)Se2 Solar Cells with a Sputtered-Zn(O,S) Buffer Layer by High-Temperature Annealing.

Wi JH, Kim TG, Kim JW, Lee WJ, Cho DH, Han WS, Chung YD.

ACS Appl Mater Interfaces. 2015 Aug 12;7(31):17425-32. doi: 10.1021/acsami.5b04815. Epub 2015 Jul 31.

PMID:
26192202

Supplemental Content

Support Center