Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 140

1.

Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury.

Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, Sofroniew MV.

J Neurosci. 2013 Jul 31;33(31):12870-86. doi: 10.1523/JNEUROSCI.2121-13.2013.

2.

STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury.

Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK, Korsak RA, Takeda K, Akira S, Sofroniew MV.

J Neurosci. 2008 Jul 9;28(28):7231-43. doi: 10.1523/JNEUROSCI.1709-08.2008.

3.

EphA4 deficient mice maintain astroglial-fibrotic scar formation after spinal cord injury.

Herrmann JE, Shah RR, Chan AF, Zheng B.

Exp Neurol. 2010 Jun;223(2):582-98. doi: 10.1016/j.expneurol.2010.02.005. Epub 2010 Feb 17.

4.

Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS.

Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LB, Tiwari-Woodruff S, Sofroniew MV.

J Neurosci. 2009 Sep 16;29(37):11511-22. doi: 10.1523/JNEUROSCI.1514-09.2009.

5.

Reactive astrocytes protect tissue and preserve function after spinal cord injury.

Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV.

J Neurosci. 2004 Mar 3;24(9):2143-55.

6.

Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse.

Hong P, Jiang M, Li H.

Glia. 2014 Dec;62(12):2044-60. doi: 10.1002/glia.22725. Epub 2014 Jul 18.

PMID:
25043492
7.

Abrogation of β-catenin signaling in oligodendrocyte precursor cells reduces glial scarring and promotes axon regeneration after CNS injury.

Rodriguez JP, Coulter M, Miotke J, Meyer RL, Takemaru K, Levine JM.

J Neurosci. 2014 Jul 30;34(31):10285-97. doi: 10.1523/JNEUROSCI.4915-13.2014.

8.

Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice.

Ribotta MG, Menet V, Privat A.

Acta Neurochir Suppl. 2004;89:87-92.

PMID:
15335106
9.

Glial scar expression of CHL1, the close homolog of the adhesion molecule L1, limits recovery after spinal cord injury.

Jakovcevski I, Wu J, Karl N, Leshchyns'ka I, Sytnyk V, Chen J, Irintchev A, Schachner M.

J Neurosci. 2007 Jul 4;27(27):7222-33.

10.

Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on glial scar formation after spinal cord injury in rats.

Chung J, Kim MH, Yoon YJ, Kim KH, Park SR, Choi BH.

J Neurosurg Spine. 2014 Dec;21(6):966-73. doi: 10.3171/2014.8.SPINE131090. Epub 2014 Oct 3.

PMID:
25279652
11.

Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury.

Funk LH, Hackett AR, Bunge MB, Lee JK.

J Neuroinflammation. 2016 Apr 20;13(1):87. doi: 10.1186/s12974-016-0552-4.

12.

Transforming growth factor α transforms astrocytes to a growth-supportive phenotype after spinal cord injury.

White RE, Rao M, Gensel JC, McTigue DM, Kaspar BK, Jakeman LB.

J Neurosci. 2011 Oct 19;31(42):15173-87. doi: 10.1523/JNEUROSCI.3441-11.2011.

13.

Matrix metalloproteinase-9 facilitates glial scar formation in the injured spinal cord.

Hsu JY, Bourguignon LY, Adams CM, Peyrollier K, Zhang H, Fandel T, Cun CL, Werb Z, Noble-Haeusslein LJ.

J Neurosci. 2008 Dec 10;28(50):13467-77. doi: 10.1523/JNEUROSCI.2287-08.2008.

14.

Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury.

Okada S, Nakamura M, Mikami Y, Shimazaki T, Mihara M, Ohsugi Y, Iwamoto Y, Yoshizaki K, Kishimoto T, Toyama Y, Okano H.

J Neurosci Res. 2004 Apr 15;76(2):265-76.

PMID:
15048924
15.

Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury.

Buss A, Pech K, Kakulas BA, Martin D, Schoenen J, Noth J, Brook GA.

Brain. 2007 Apr;130(Pt 4):940-53. Epub 2007 Feb 21.

PMID:
17314203
16.

The glial scar in spinal cord injury and repair.

Yuan YM, He C.

Neurosci Bull. 2013 Aug;29(4):421-35. doi: 10.1007/s12264-013-1358-3. Epub 2013 Jul 16. Review.

PMID:
23861090
17.

Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury.

Soderblom C, Luo X, Blumenthal E, Bray E, Lyapichev K, Ramos J, Krishnan V, Lai-Hsu C, Park KK, Tsoulfas P, Lee JK.

J Neurosci. 2013 Aug 21;33(34):13882-7. doi: 10.1523/JNEUROSCI.2524-13.2013.

19.

The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury.

Chen CH, Sung CS, Huang SY, Feng CW, Hung HC, Yang SN, Chen NF, Tai MH, Wen ZH, Chen WF.

Exp Neurol. 2016 Apr;278:27-41. doi: 10.1016/j.expneurol.2016.01.023. Epub 2016 Jan 30.

PMID:
26828688
20.

Axonal regeneration through the fibrous scar in lesioned goldfish spinal cord.

Takeda A, Atobe Y, Kadota T, Goris RC, Funakoshi K.

Neuroscience. 2015 Jan 22;284:134-52. doi: 10.1016/j.neuroscience.2014.09.066. Epub 2014 Oct 5.

PMID:
25290012

Supplemental Content

Support Center