Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

The role of hyaluronic acid precursor concentrations in molecular weight control in Streptococcus zooepidemicus.

Chen WY, Marcellin E, Steen JA, Nielsen LK.

Mol Biotechnol. 2014 Feb;56(2):147-56. doi: 10.1007/s12033-013-9690-4.

PMID:
23903961
2.

Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus.

Chen WY, Marcellin E, Hung J, Nielsen LK.

J Biol Chem. 2009 Jul 3;284(27):18007-14. doi: 10.1074/jbc.M109.011999.

3.
4.

Metabolic control of hyaluronan synthases.

Vigetti D, Viola M, Karousou E, De Luca G, Passi A.

Matrix Biol. 2014 Apr;35:8-13. doi: 10.1016/j.matbio.2013.10.002. Review.

5.

Role of UDP-N-acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis.

Vigetti D, Deleonibus S, Moretto P, Karousou E, Viola M, Bartolini B, Hascall VC, Tammi M, De Luca G, Passi A.

J Biol Chem. 2012 Oct 12;287(42):35544-55. doi: 10.1074/jbc.M112.402347.

6.

Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis.

Hmar RV, Prasad SB, Jayaraman G, Ramachandran KB.

Biotechnol J. 2014 Dec;9(12):1554-64. doi: 10.1002/biot.201400215.

PMID:
25044639
7.

Ratio of intracellular precursors concentration and their flux influences hyaluronic acid molecular weight in Streptococcus zooepidemicus and recombinant Lactococcus lactis.

Badle SS, Jayaraman G, Ramachandran KB.

Bioresour Technol. 2014 Jul;163:222-7. doi: 10.1016/j.biortech.2014.04.027.

PMID:
24814248
8.

Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight.

Jeong E, Shim WY, Kim JH.

J Biotechnol. 2014 Sep 20;185:28-36. doi: 10.1016/j.jbiotec.2014.05.018.

PMID:
24892811
9.

Simultaneous determination of intracellular UDP-sugars in hyaluronic acid-producing Streptococcus zooepidemicus.

Franke L, Čožíková D, Smirnou D, Hermannová M, Hanová T, Růžičková A, Velebný V.

J Chromatogr B Analyt Technol Biomed Life Sci. 2015 Aug 1;997:194-9. doi: 10.1016/j.jchromb.2015.05.038.

PMID:
26114654
10.

Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis.

Prasad SB, Ramachandran KB, Jayaraman G.

Appl Microbiol Biotechnol. 2012 Jun;94(6):1593-607. doi: 10.1007/s00253-012-3944-0.

PMID:
22367612
11.

Genetic and biochemical characterization of genes involved in hyaluronic acid synthesis in Streptococcus zooepidemicus.

Zhang Y, Luo K, Zhao Q, Qi Z, Nielsen LK, Liu H.

Appl Microbiol Biotechnol. 2016 Apr;100(8):3611-20. doi: 10.1007/s00253-016-7286-1.

PMID:
26758299
12.

Metabolic engineering of Lactobacillus casei for production of UDP-N-acetylglucosamine.

Rodríguez-Díaz J, Rubio-del-Campo A, Yebra MJ.

Biotechnol Bioeng. 2012 Jul;109(7):1704-12. doi: 10.1002/bit.24475.

PMID:
22383248
13.

The dynamic metabolism of hyaluronan regulates the cytosolic concentration of UDP-GlcNAc.

Hascall VC, Wang A, Tammi M, Oikari S, Tammi R, Passi A, Vigetti D, Hanson RW, Hart GW.

Matrix Biol. 2014 Apr;35:14-7. doi: 10.1016/j.matbio.2014.01.014. Review.

14.

Acetamido sugar biosynthesis in the Euryarchaea.

Namboori SC, Graham DE.

J Bacteriol. 2008 Apr;190(8):2987-96. doi: 10.1128/JB.01970-07.

15.

Mass isotopomer analysis of metabolically labeled nucleotide sugars and N- and O-glycans for tracing nucleotide sugar metabolisms.

Nakajima K, Ito E, Ohtsubo K, Shirato K, Takamiya R, Kitazume S, Angata T, Taniguchi N.

Mol Cell Proteomics. 2013 Sep;12(9):2468-80. doi: 10.1074/mcp.M112.027151.

16.

Heterologous Production of Hyaluronic Acid in an ε-Poly-L-Lysine Producer, Streptomyces albulus.

Yoshimura T, Shibata N, Hamano Y, Yamanaka K.

Appl Environ Microbiol. 2015 Jun;81(11):3631-40. doi: 10.1128/AEM.00269-15.

17.

Biosynthesis of hyaluronic acid by Streptococcus.

Sugahara K, Schwartz NB, Dorfman A.

J Biol Chem. 1979 Jul 25;254(14):6252-61.

18.

Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid.

Yu H, Stephanopoulos G.

Metab Eng. 2008 Jan;10(1):24-32.

PMID:
17959405
19.

Understanding plasmid effect on hyaluronic acid molecular weight produced by Streptococcus equi subsp. zooepidemicus.

Marcellin E, Chen WY, Nielsen LK.

Metab Eng. 2010 Jan;12(1):62-9. doi: 10.1016/j.ymben.2009.09.001.

PMID:
19782148
20.

Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis.

Prasad SB, Jayaraman G, Ramachandran KB.

Appl Microbiol Biotechnol. 2010 Mar;86(1):273-83. doi: 10.1007/s00253-009-2293-0.

PMID:
19862515
Items per page

Supplemental Content

Support Center