Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Mapping and confirmation of a major left ventricular mass QTL on rat chromosome 1 by contrasting SHRSP and F344 rats.

Grabowski K, Koplin G, Aliu B, Schulte L, Schulz A, Kreutz R.

Physiol Genomics. 2013 Sep 16;45(18):827-33. doi: 10.1152/physiolgenomics.00067.2013. Epub 2013 Jul 30.

2.

Identification of quantitative trait loci for cardiac hypertrophy in two different strains of the spontaneously hypertensive rat.

Inomata H, Watanabe T, Iizuka Y, Liang YQ, Mashimo T, Nabika T, Ikeda K, Yanai K, Gotoda T, Yamori Y, Isobe M, Kato N.

Hypertens Res. 2005 Mar;28(3):273-81.

PMID:
16097372
3.

Rat chromosome 19 transfer from SHR ameliorates hypertension, salt-sensitivity, cardiovascular and renal organ damage in salt-sensitive Dahl rats.

Wendt N, Schulz A, Siegel AK, Weiss J, Wehland M, Sietmann A, Kossmehl P, Grimm D, Stoll M, Kreutz R.

J Hypertens. 2007 Jan;25(1):95-102. Erratum in: J Hypertens. 2007 Feb;25(2):485.

PMID:
17143179
4.

Genetic linkage of albuminuria and renal injury in Dahl salt-sensitive rats on a high-salt diet: comparison with spontaneously hypertensive rats.

Siegel AK, Kossmehl P, Planert M, Schulz A, Wehland M, Stoll M, Bruijn JA, de Heer E, Kreutz R.

Physiol Genomics. 2004 Jul 8;18(2):218-25.

PMID:
15161966
5.

Fetal-adult cardiac transcriptome analysis in rats with contrasting left ventricular mass reveals new candidates for cardiac hypertrophy.

Grabowski K, Riemenschneider M, Schulte L, Witten A, Schulz A, Stoll M, Kreutz R.

PLoS One. 2015 Feb 3;10(2):e0116807. doi: 10.1371/journal.pone.0116807. eCollection 2015.

6.

Genetic loci contribute to the progression of vascular and cardiac hypertrophy in salt-sensitive spontaneous hypertension.

Siegel AK, Planert M, Rademacher S, Mehr AP, Kossmehl P, Wehland M, Stoll M, Kreutz R.

Arterioscler Thromb Vasc Biol. 2003 Jul 1;23(7):1211-7. Epub 2003 May 29.

7.

Genetic mapping of quantitative trait loci influencing left ventricular mass in rats.

Tsujita Y, Iwai N, Tamaki S, Nakamura Y, Nishimura M, Kinoshita M.

Am J Physiol Heart Circ Physiol. 2000 Nov;279(5):H2062-7.

8.

Analysis of circadian blood pressure rhythm and target-organ damage in stroke-prone spontaneously hypertensive rats.

Shimamura T, Nakajima M, Iwasaki T, Hayasaki Y, Yonetani Y, Iwaki K.

J Hypertens. 1999 Feb;17(2):211-20.

PMID:
10067790
9.
10.

Genetic analysis of salt-sensitive hypertension in Dahl rats reveals a link between cardiac fibrosis and high cholesterol.

Wendt N, Schulz A, Qadri F, Bolbrinker J, Kossmehl P, Winkler K, Stoll M, Vetter R, Kreutz R.

Cardiovasc Res. 2009 Feb 15;81(3):618-26. doi: 10.1093/cvr/cvn263. Epub 2008 Sep 29.

PMID:
18824493
11.

Interaction between chromosome 2 and 3 regulates pulse pressure in the stroke-prone spontaneously hypertensive rat.

Koh-Tan HH, McBride MW, McClure JD, Beattie E, Young B, Dominiczak AF, Graham D.

Hypertension. 2013 Jul;62(1):33-40. doi: 10.1161/HYPERTENSIONAHA.111.00814. Epub 2013 May 6.

12.

Genetic determination of cardiac mass in normotensive rats: results from an F344xWKY cross.

Sebkhi A, Zhao L, Lu L, Haley CS, Nunez DJ, Wilkins MR.

Hypertension. 1999 Apr;33(4):949-53.

13.

Identification of quantitative trait loci for serum cholesterol levels in stroke-prone spontaneously hypertensive rats.

Kato N, Tamada T, Nabika T, Ueno K, Gotoda T, Matsumoto C, Mashimo T, Sawamura M, Ikeda K, Nara Y, Yamori Y.

Arterioscler Thromb Vasc Biol. 2000 Jan;20(1):223-9.

14.

Isolation of a chromosome 1 region affecting blood pressure and vascular disease traits in the stroke-prone rat model.

Kato N, Nabika T, Liang YQ, Mashimo T, Inomata H, Watanabe T, Yanai K, Yamori Y, Yazaki Y, Sasazuki T.

Hypertension. 2003 Dec;42(6):1191-7. Epub 2003 Nov 17.

15.

Plzf as a candidate gene predisposing the spontaneously hypertensive rat to hypertension, left ventricular hypertrophy, and interstitial fibrosis.

Liška F, Mancini M, Krupková M, Chylíková B, Křenová D, Šeda O, Šilhavý J, Mlejnek P, Landa V, Zídek V, d' Amati G, Pravenec M, Křen V.

Am J Hypertens. 2014 Jan;27(1):99-106. doi: 10.1093/ajh/hpt156. Epub 2013 Aug 23.

PMID:
23975223
16.

Congenic strains provide evidence that four mapped loci in chromosomes 2, 4, and 16 influence hypertension in the SHR.

Aneas I, Rodrigues MV, Pauletti BA, Silva GJ, Carmona R, Cardoso L, Kwitek AE, Jacob HJ, Soler JM, Krieger JE.

Physiol Genomics. 2009 Mar 3;37(1):52-7. doi: 10.1152/physiolgenomics.90299.2008. Epub 2009 Jan 6.

17.

Functional alterations of the Nppa promoter are linked to cardiac ventricular hypertrophy in WKY/WKHA rat crosses.

Deschepper CF, Masciotra S, Zahabi A, Boutin-Ganache I, Picard S, Reudelhuber TL.

Circ Res. 2001 Feb 2;88(2):223-8.

18.

Congenic removal of a QTL for blood pressure attenuates infarct size produced by middle cerebral artery occlusion in hypertensive rats.

Yao H, Cui ZH, Masuda J, Nabika T.

Physiol Genomics. 2007 Jun 19;30(1):69-73. Epub 2007 Feb 27.

19.
20.

Blood pressure and proteinuria effects of multiple quantitative trait loci on rat chromosome 9 that differentiate the spontaneously hypertensive rat from the Dahl salt-sensitive rat.

Toland EJ, Yerga-Woolwine S, Farms P, Cicila GT, Saad Y, Joe B.

J Hypertens. 2008 Nov;26(11):2134-41. doi: 10.1097/HJH.0b013e32830ef95c.

PMID:
18854752

Supplemental Content

Support Center