Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 331

1.

Programming of human umbilical cord mesenchymal stem cells in vitro to promote pancreatic gene expression.

Wang H, Yang Y, Ho G, Lin X, Wu W, Li W, Lin L, Feng X, Huo X, Jiang J, Liu X, Huang T, Wei C, Ma L.

Mol Med Rep. 2013 Sep;8(3):769-74. doi: 10.3892/mmr.2013.1598. Epub 2013 Jul 23.

PMID:
23900717
2.

[Neurogenin 3 and Paired box gene 4 promote PDX1-induced differentiation of mesenchymal stem cells into pancreatic secretory cells].

Tang XL, Xiao R, Wang YX, He M, Xie T, Zhang C, Liu SJ.

Beijing Da Xue Xue Bao Yi Xue Ban. 2011 Jun 18;43(3):421-6. Chinese.

3.

Insulin but not glucagon gene is silenced in human pancreas-derived mesenchymal stem cells.

Wilson LM, Wong SH, Yu N, Geras-Raaka E, Raaka BM, Gershengorn MC.

Stem Cells. 2009 Nov;27(11):2703-11. doi: 10.1002/stem.229.

4.

Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming.

Swales N, Martens GA, Bonné S, Heremans Y, Borup R, Van de Casteele M, Ling Z, Pipeleers D, Ravassard P, Nielsen F, Ferrer J, Heimberg H.

PLoS One. 2012;7(5):e37055. doi: 10.1371/journal.pone.0037055. Epub 2012 May 14.

5.

PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesenchymal stromal cells into pancreatic endocrine lineages.

Limbert C, Päth G, Ebert R, Rothhammer V, Kassem M, Jakob F, Seufert J.

Cytotherapy. 2011 Aug;13(7):802-13. doi: 10.3109/14653249.2011.571248. Epub 2011 Apr 21.

PMID:
21506889
6.

Reprogramming of pancreatic exocrine cells towards a beta (β) cell character using Pdx1, Ngn3 and MafA.

Akinci E, Banga A, Greder LV, Dutton JR, Slack JM.

Biochem J. 2012 Mar 15;442(3):539-50. doi: 10.1042/BJ20111678.

7.

Adenoviral vectors stimulate glucagon transcription in human mesenchymal stem cells expressing pancreatic transcription factors.

Zaldumbide A, Carlotti F, Gonçalves MA, Knaän-Shanzer S, Cramer SJ, Roep BO, Wiertz EJ, Hoeben RC.

PLoS One. 2012;7(10):e48093. doi: 10.1371/journal.pone.0048093. Epub 2012 Oct 26.

8.

Sequential introduction and dosage balance of defined transcription factors affect reprogramming efficiency from pancreatic duct cells into insulin-producing cells.

Miyashita K, Miyatsuka T, Matsuoka TA, Sasaki S, Takebe S, Yasuda T, Watada H, Kaneto H, Shimomura I.

Biochem Biophys Res Commun. 2014 Feb 21;444(4):514-9. doi: 10.1016/j.bbrc.2014.01.083. Epub 2014 Jan 25.

PMID:
24472553
9.

Reprogramming of mice primary hepatocytes into insulin-producing cells by transfection with multicistronic vectors.

Luo H, Chen R, Yang R, Liu Y, Chen Y, Shu Y, Chen H.

J Diabetes Res. 2014;2014:716163. doi: 10.1155/2014/716163. Epub 2014 May 19.

10.

Efficient differentiation of AR42J cells towards insulin-producing cells using pancreatic transcription factors in combination with growth factors.

Lima MJ, Docherty HM, Chen Y, Docherty K.

Mol Cell Endocrinol. 2012 Jul 6;358(1):69-80. doi: 10.1016/j.mce.2012.02.024. Epub 2012 Mar 10.

PMID:
22429991
11.

In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes.

Li W, Nakanishi M, Zumsteg A, Shear M, Wright C, Melton DA, Zhou Q.

Elife. 2014 Jan 1;3:e01846. doi: 10.7554/eLife.01846.

12.

ATF2 interacts with beta-cell-enriched transcription factors, MafA, Pdx1, and beta2, and activates insulin gene transcription.

Han SI, Yasuda K, Kataoka K.

J Biol Chem. 2011 Mar 25;286(12):10449-56. doi: 10.1074/jbc.M110.209510. Epub 2011 Jan 28.

13.

Expression of Ins1 and Ins2 genes in mouse fetal liver.

Murakami-Kawaguchi S, Takasawa S, Onogawa T, Nata K, Itaya-Hironaka A, Sakuramoto-Tsuchida S, Yamauchi A, Ota H, Takeda M, Kato M, Okamoto H.

Cell Tissue Res. 2014 Feb;355(2):303-14. doi: 10.1007/s00441-013-1741-4. Epub 2013 Nov 21.

PMID:
24258027
14.

Genetic modification of primate amniotic fluid-derived stem cells produces pancreatic progenitor cells in vitro.

Zhou Y, Mack DL, Williams JK, Mirmalek-Sani SH, Moorefield E, Chun SY, Wang J, Lorenzetti D, Furth M, Atala A, Soker S.

Cells Tissues Organs. 2013;197(4):269-82. doi: 10.1159/000345816. Epub 2013 Jan 8.

15.

Pdx1 and Ngn3 overexpression enhances pancreatic differentiation of mouse ES cell-derived endoderm population.

Kubo A, Stull R, Takeuchi M, Bonham K, Gouon-Evans V, Sho M, Iwano M, Saito Y, Keller G, Snodgrass R.

PLoS One. 2011;6(9):e24058. doi: 10.1371/journal.pone.0024058. Epub 2011 Sep 13.

16.

The combined expression of Pdx1 and MafA with either Ngn3 or NeuroD improves the differentiation efficiency of mouse embryonic stem cells into insulin-producing cells.

Xu H, Tsang KS, Chan JC, Yuan P, Fan R, Kaneto H, Xu G.

Cell Transplant. 2013;22(1):147-58. doi: 10.3727/096368912X653057. Epub 2012 Jul 5.

PMID:
22776709
17.

In vivo studies on non-viral transdifferentiation of liver cells towards pancreatic β cells.

Cim A, Sawyer GJ, Zhang X, Su H, Collins L, Jones P, Antoniou M, Reynes JP, Lipps HJ, Fabre JW.

J Endocrinol. 2012 Sep;214(3):277-88. Epub 2012 Jun 8.

18.

Mafa Enables Pdx1 to Effectively Convert Pancreatic Islet Progenitors and Committed Islet α-Cells Into β-Cells In Vivo.

Matsuoka TA, Kawashima S, Miyatsuka T, Sasaki S, Shimo N, Katakami N, Kawamori D, Takebe S, Herrera PL, Kaneto H, Stein R, Shimomura I.

Diabetes. 2017 May;66(5):1293-1300. doi: 10.2337/db16-0887. Epub 2017 Feb 21.

19.

Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation.

Jensen J, Heller RS, Funder-Nielsen T, Pedersen EE, Lindsell C, Weinmaster G, Madsen OD, Serup P.

Diabetes. 2000 Feb;49(2):163-76.

PMID:
10868931
20.

Differentiation of iPSCs into insulin-producing cells via adenoviral transfection of PDX-1, NeuroD1 and MafA.

Wang L, Huang Y, Guo Q, Fan X, Lu Y, Zhu S, Wang Y, Bo X, Chang X, Zhu M, Wang Z.

Diabetes Res Clin Pract. 2014 Jun;104(3):383-92. doi: 10.1016/j.diabres.2014.03.017. Epub 2014 Apr 1.

PMID:
24794627

Supplemental Content

Support Center