Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 128

1.

Systematic and controllable negative, zero, and positive thermal expansion in cubic Zr(1-x)Sn(x)Mo2O8.

Tallentire SE, Child F, Fall I, Vella-Zarb L, Evans IR, Tucker MG, Keen DA, Wilson C, Evans JS.

J Am Chem Soc. 2013 Aug 28;135(34):12849-56. doi: 10.1021/ja4060564. Epub 2013 Aug 15.

PMID:
23895493
2.

Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF6 (M = Ca, Mn, Fe, Co, Ni, and Zn).

Hu L, Chen J, Xu J, Wang N, Han F, Ren Y, Pan Z, Rong Y, Huang R, Deng J, Li L, Xing X.

J Am Chem Soc. 2016 Nov 9;138(44):14530-14533. Epub 2016 Nov 1.

PMID:
27783492
3.

Zero thermal expansion and ferromagnetism in cubic Sc(1-x)M(x)F3 (M = Ga, Fe) over a wide temperature range.

Hu L, Chen J, Fan L, Ren Y, Rong Y, Pan Z, Deng J, Yu R, Xing X.

J Am Chem Soc. 2014 Oct 1;136(39):13566-9. doi: 10.1021/ja5077487. Epub 2014 Sep 22.

PMID:
25233253
4.

Phase transitions, prominent dielectric anomalies, and negative thermal expansion in three high thermally stable ammonium magnesium-formate frameworks.

Shang R, Xu GC, Wang ZM, Gao S.

Chemistry. 2014 Jan 20;20(4):1146-58. doi: 10.1002/chem.201303425. Epub 2013 Dec 16.

PMID:
24375515
5.

Anisotropic thermal expansion in a metal-organic framework.

Madsen SR, Lock N, Overgaard J, Iversen BB.

Acta Crystallogr B Struct Sci Cryst Eng Mater. 2014 Jun;70(Pt 3):595-601. doi: 10.1107/S2052520614003497. Epub 2014 May 31.

PMID:
24892606
6.

Orientational order-dependent thermal expansion and compressibility of ZrW2O8 and ZrMo2O8.

Gallington LC, Chapman KW, Morelock CR, Chupas PJ, Wilkinson AP.

Phys Chem Chem Phys. 2013 Dec 7;15(45):19665-72. doi: 10.1039/c3cp52876f. Epub 2013 Oct 17.

PMID:
24132126
7.

Abnormal thermal expansion properties of cubic NaZn13-type La(Fe,Al)13 compounds.

Li W, Huang R, Wang W, Zhao Y, Li S, Huang C, Li L.

Phys Chem Chem Phys. 2015 Feb 28;17(8):5556-60. doi: 10.1039/c4cp05064a.

PMID:
25642468
8.

Zero thermal expansion in NaZn13-type La(Fe,Si)13 compounds.

Wang W, Huang R, Li W, Tan J, Zhao Y, Li S, Huang C, Li L.

Phys Chem Chem Phys. 2015 Jan 28;17(4):2352-6. doi: 10.1039/c4cp04672b. Epub 2014 Dec 15.

PMID:
25503989
9.

Tunable anisotropic thermal expansion of a porous zinc(II) metal-organic framework.

Grobler I, Smith VJ, Bhatt PM, Herbert SA, Barbour LJ.

J Am Chem Soc. 2013 May 1;135(17):6411-4. doi: 10.1021/ja401671p. Epub 2013 Apr 18.

PMID:
23581524
10.

New Family of Materials with Negative Coefficients of Thermal Expansion: The Effect of MgO, CoO, MnO, NiO, or CuO on the Phase Stability and Thermal Expansion of Solid Solution Phases Derived from BaZn2Si2O7.

Thieme C, Waurischk T, Heitmann S, Rüssel C.

Inorg Chem. 2016 May 2;55(9):4476-84. doi: 10.1021/acs.inorgchem.6b00290. Epub 2016 Apr 11.

PMID:
27062972
11.

Determination of Thermal Expansion Coefficients and Locating the Temperature-Induced Phase Transition in Methylammonium Lead Perovskites Using X-ray Diffraction.

Jacobsson TJ, Schwan LJ, Ottosson M, Hagfeldt A, Edvinsson T.

Inorg Chem. 2015 Nov 16;54(22):10678-85. doi: 10.1021/acs.inorgchem.5b01481. Epub 2015 Oct 12.

PMID:
26457861
12.

Very high or close to zero thermal expansion by the variation of the Sr/Ba ratio in Ba(1-x)Sr(x)Zn2Si2O7- solid solutions.

Thieme C, Rüssel C.

Dalton Trans. 2016 Mar 21;45(11):4888-95. doi: 10.1039/c5dt04970a. Epub 2016 Feb 15.

PMID:
26877171
13.

Isotropic Negative Thermal Expansion Metamaterials.

Wu L, Li B, Zhou J.

ACS Appl Mater Interfaces. 2016 Jul 13;8(27):17721-7. doi: 10.1021/acsami.6b05717. Epub 2016 Jul 1.

PMID:
27333052
14.

Crystal structure and thermal expansion of Mn(1-x)Fe(x)Ge.

Dyadkin V, Grigoriev S, Ovsyannikov SV, Bykova E, Dubrovinsky L, Tsvyashchenko A, Fomicheva LN, Chernyshov D.

Acta Crystallogr B Struct Sci Cryst Eng Mater. 2014 Aug;70(Pt 4):676-80. doi: 10.1107/S2052520614006611. Epub 2014 Jul 31.

PMID:
25080246
15.

Ba(1-x)Sr(x)Zn2Si2O7--A new family of materials with negative and very high thermal expansion.

Thieme C, Görls H, Rüssel C.

Sci Rep. 2015 Dec 15;5:18040. doi: 10.1038/srep18040.

16.

Pronounced negative thermal expansion from a simple structure: cubic ScF(3).

Greve BK, Martin KL, Lee PL, Chupas PJ, Chapman KW, Wilkinson AP.

J Am Chem Soc. 2010 Nov 10;132(44):15496-8. doi: 10.1021/ja106711v.

PMID:
20958035
17.

Impact of metallophilicity on "colossal" positive and negative thermal expansion in a series of isostructural dicyanometallate coordination polymers.

Korcok JL, Katz MJ, Leznoff DB.

J Am Chem Soc. 2009 Apr 8;131(13):4866-71. doi: 10.1021/ja809631r.

PMID:
19290631
18.
19.

Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials.

Borrell A, García-Moreno O, Torrecillas R, García-Rocha V, Fernández A.

Sci Technol Adv Mater. 2012 Feb 9;13(1):015007. eCollection 2012 Feb.

20.

Influence of disorder-to-order transition on lattice thermal expansion and oxide ion conductivity in (Ca(x)Gd(1-x))(2)(Zr(1-x)M(x))2O7 pyrochlore solid solutions.

Radhakrishnan AN, Rao PP, Linsa KS, Deepa M, Koshy P.

Dalton Trans. 2011 Apr 21;40(15):3839-48. doi: 10.1039/c0dt01688h. Epub 2011 Feb 15.

PMID:
21327208

Supplemental Content

Support Center