Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Polyethylene glycol repairs membrane damage and enhances functional recovery: a tissue engineering approach to spinal cord injury.

Shi R.

Neurosci Bull. 2013 Aug;29(4):460-6. doi: 10.1007/s12264-013-1364-5. Epub 2013 Jul 28. Review.

PMID:
23893430
2.

Polyethylene glycol enhances axolemmal resealing following transection in cultured cells and in ex vivo spinal cord.

Nehrt A, Hamann K, Ouyang H, Shi R.

J Neurotrauma. 2010 Jan;27(1):151-61. doi: 10.1089/neu.2009.0993.

PMID:
19691421
3.
4.

Functional silica nanoparticle-mediated neuronal membrane sealing following traumatic spinal cord injury.

Cho Y, Shi R, Ivanisevic A, Borgens RB.

J Neurosci Res. 2010 May 15;88(7):1433-44. doi: 10.1002/jnr.22309.

PMID:
19998478
6.

Protective effect of low molecular weight polyethylene glycol on the repair of experimentally damaged neural membranes in rat's spinal cord.

Kouhzaei S, Rad I, Mousavidoust S, Mobasheri H.

Neurol Res. 2013 May;35(4):415-23. doi: 10.1179/1743132812Y.0000000133.

PMID:
23540410
7.

Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury.

Baptiste DC, Austin JW, Zhao W, Nahirny A, Sugita S, Fehlings MG.

J Neuropathol Exp Neurol. 2009 Jun;68(6):661-76. doi: 10.1097/NEN.0b013e3181a72605.

PMID:
19458542
8.
9.

Polyethylene glycol inhibits apoptotic cell death following traumatic spinal cord injury.

Luo J, Shi R.

Brain Res. 2007 Jun 25;1155:10-6. Epub 2007 May 3.

PMID:
17512912
10.

Rapid recovery from spinal cord injury after subcutaneously administered polyethylene glycol.

Borgens RB, Bohnert D.

J Neurosci Res. 2001 Dec 15;66(6):1179-86.

PMID:
11746451
11.
12.

Single-walled carbon nanotubes chemically functionalized with polyethylene glycol promote tissue repair in a rat model of spinal cord injury.

Roman JA, Niedzielko TL, Haddon RC, Parpura V, Floyd CL.

J Neurotrauma. 2011 Nov;28(11):2349-62. doi: 10.1089/neu.2010.1409. Epub 2011 Apr 12.

13.

Cellular engineering: molecular repair of membranes to rescue cells of the damaged nervous system.

Borgens RB.

Neurosurgery. 2001 Aug;49(2):370-8; discussion 378-9. Review.

PMID:
11504113
14.

The neuroprotective ability of polyethylene glycol is affected by temperature in ex vivo spinal cord injury model.

Kouhzaei S, Rad I, Khodayari K, Mobasheri H.

J Membr Biol. 2013 Aug;246(8):613-9. doi: 10.1007/s00232-013-9574-3. Epub 2013 Jun 23.

PMID:
23793797
15.

Dimethylsulfoxide enhances CNS neuronal plasma membrane resealing after injury in low temperature or low calcium.

Shi R, Qiao X, Emerson N, Malcom A.

J Neurocytol. 2001 Sep-Oct;30(9-10):829-39.

PMID:
12165673
16.

Efficient repairing effect of PEG based tri-block copolymer on mechanically damaged PC12 cells and isolated spinal cord.

Rad I, Mobasheri H, Najafi F, Rezaei M.

J Mater Sci Mater Med. 2014 Jun;25(6):1539-51. doi: 10.1007/s10856-014-5168-6. Epub 2014 Feb 12.

PMID:
24519755
17.
18.

Experimental Strategies to Bridge Large Tissue Gaps in the Injured Spinal Cord after Acute and Chronic Lesion.

Brazda N, Estrada V, Voss C, Seide K, Trieu HK, Müller HW.

J Vis Exp. 2016 Apr 5;(110):e53331. doi: 10.3791/53331.

PMID:
27077921
19.

Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds.

Liu C, Huang Y, Pang M, Yang Y, Li S, Liu L, Shu T, Zhou W, Wang X, Rong L, Liu B.

PLoS One. 2015 Mar 24;10(3):e0117709. doi: 10.1371/journal.pone.0117709. eCollection 2015.

20.

Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection.

Satkunendrarajah K, Nassiri F, Karadimas SK, Lip A, Yao G, Fehlings MG.

Exp Neurol. 2016 Feb;276:59-71. doi: 10.1016/j.expneurol.2015.09.011. Epub 2015 Sep 21.

Supplemental Content

Support Center