Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Mycobacterium tuberculosis cholesterol catabolism requires a new class of acyl coenzyme A dehydrogenase.

Voskuil MI.

J Bacteriol. 2013 Oct;195(19):4319-21. doi: 10.1128/JB.00867-13. Epub 2013 Jul 26. No abstract available.

2.
3.

Characterization of novel acyl coenzyme A dehydrogenases involved in bacterial steroid degradation.

Ruprecht A, Maddox J, Stirling AJ, Visaggio N, Seah SY.

J Bacteriol. 2015 Apr;197(8):1360-7. doi: 10.1128/JB.02420-14. Epub 2015 Feb 2.

4.

Actinobacterial acyl coenzyme A synthetases involved in steroid side-chain catabolism.

Casabon I, Swain K, Crowe AM, Eltis LD, Mohn WW.

J Bacteriol. 2014 Feb;196(3):579-87. doi: 10.1128/JB.01012-13. Epub 2013 Nov 15.

5.

Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations.

Griffin JE, Pandey AK, Gilmore SA, Mizrahi V, McKinney JD, Bertozzi CR, Sassetti CM.

Chem Biol. 2012 Feb 24;19(2):218-27. doi: 10.1016/j.chembiol.2011.12.016. Erratum in: Chem Biol. 2012 Sep 21;19(9):1210.

6.

Activity of 3-ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis.

Capyk JK, Casabon I, Gruninger R, Strynadka NC, Eltis LD.

J Biol Chem. 2011 Nov 25;286(47):40717-24. doi: 10.1074/jbc.M111.289975. Epub 2011 Oct 10.

7.

Cloning and expression of an acyl-CoA dehydrogenase from Mycobacterium tuberculosis.

Mahadevan U, Padmanaban G.

Biochem Biophys Res Commun. 1998 Mar 27;244(3):893-7.

PMID:
9535763
8.

Characterization of an Aldolase Involved in Cholesterol Side Chain Degradation in Mycobacterium tuberculosis.

Gilbert S, Hood L, Seah SYK.

J Bacteriol. 2017 Dec 20;200(2). pii: e00512-17. doi: 10.1128/JB.00512-17. Print 2018 Jan 15.

9.

Characterization of an aldolase-dehydrogenase complex from the cholesterol degradation pathway of Mycobacterium tuberculosis.

Carere J, McKenna SE, Kimber MS, Seah SY.

Biochemistry. 2013 May 21;52(20):3502-11. doi: 10.1021/bi400351h. Epub 2013 May 8.

PMID:
23614353
10.

Catabolism of the Last Two Steroid Rings in Mycobacterium tuberculosis and Other Bacteria.

Crowe AM, Casabon I, Brown KL, Liu J, Lian J, Rogalski JC, Hurst TE, Snieckus V, Foster LJ, Eltis LD.

MBio. 2017 Apr 4;8(2). pii: e00321-17. doi: 10.1128/mBio.00321-17.

11.

Mycobacterium tuberculosis utilizes a unique heterotetrameric structure for dehydrogenation of the cholesterol side chain.

Thomas ST, Sampson NS.

Biochemistry. 2013 Apr 30;52(17):2895-904. doi: 10.1021/bi4002979. Epub 2013 Apr 18.

12.

An acyl-CoA synthetase in Mycobacterium tuberculosis involved in triacylglycerol accumulation during dormancy.

Daniel J, Sirakova T, Kolattukudy P.

PLoS One. 2014 Dec 9;9(12):e114877. doi: 10.1371/journal.pone.0114877. eCollection 2014.

13.

IpdAB, a virulence factor in Mycobacterium tuberculosis, is a cholesterol ring-cleaving hydrolase.

Crowe AM, Workman SD, Watanabe N, Worrall LJ, Strynadka NCJ, Eltis LD.

Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3378-E3387. doi: 10.1073/pnas.1717015115. Epub 2018 Mar 26.

14.

Differential fadE28 expression associated with phenotypic virulence of Mycobacterium tuberculosis.

Lam TH, Yuen KY, Ho PL, Wong KC, Leong WM, Law HK, Weng XH, Zhang WH, Chen S, Yam WC.

Microb Pathog. 2008 Jul;45(1):12-7. doi: 10.1016/j.micpath.2008.01.006. Epub 2008 Mar 25.

PMID:
18486437
15.

Pathway profiling in Mycobacterium tuberculosis: elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism.

Thomas ST, VanderVen BC, Sherman DR, Russell DG, Sampson NS.

J Biol Chem. 2011 Dec 23;286(51):43668-78. doi: 10.1074/jbc.M111.313643. Epub 2011 Nov 1.

16.

Regulation of the KstR2 regulon of Mycobacterium tuberculosis by a cholesterol catabolite.

Casabon I, Zhu SH, Otani H, Liu J, Mohn WW, Eltis LD.

Mol Microbiol. 2013 Sep;89(6):1201-12. doi: 10.1111/mmi.12340. Epub 2013 Aug 14.

17.

Functional annotation of putative fadE9 of Mycobacterium tuberculosis as isobutyryl-CoA dehydrogenase involved in valine catabolism.

Rani N, Hazra S, Singh A, Surolia A.

Int J Biol Macromol. 2019 Feb 1;122:45-57. doi: 10.1016/j.ijbiomac.2018.10.040. Epub 2018 Oct 11.

PMID:
30316772
18.

Pathogen roid rage: cholesterol utilization by Mycobacterium tuberculosis.

Wipperman MF, Sampson NS, Thomas ST.

Crit Rev Biochem Mol Biol. 2014 Jul-Aug;49(4):269-93. doi: 10.3109/10409238.2014.895700. Epub 2014 Mar 10. Review.

19.
20.

Characterization of a beta-hydroxybutyryl-CoA dehydrogenase from Mycobacterium tuberculosis.

Taylor RC, Brown AK, Singh A, Bhatt A, Besra GS.

Microbiology. 2010 Jul;156(Pt 7):1975-82. doi: 10.1099/mic.0.038802-0. Epub 2010 Apr 8.

PMID:
20378648

Supplemental Content

Support Center