Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Oxygen isotope signature of UV degradation of glyphosate and phosphonoacetate: tracing sources and cycling of phosphonates.

Sandy EH, Blake RE, Chang SJ, Jun Y, Yu C.

J Hazard Mater. 2013 Sep 15;260:947-54. doi: 10.1016/j.jhazmat.2013.06.057. Epub 2013 Jun 29.

PMID:
23892161
2.

Degradation and Isotope Source Tracking of Glyphosate and Aminomethylphosphonic Acid.

Li H, Joshi SR, Jaisi DP.

J Agric Food Chem. 2016 Jan 27;64(3):529-38. doi: 10.1021/acs.jafc.5b04838. Epub 2016 Jan 13.

PMID:
26689867
3.

Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations.

Jaisi DP, Li H, Wallace AF, Paudel P, Sun M, Balakrishna A, Lerch RN.

J Agric Food Chem. 2016 Nov 16;64(45):8474-8482. Epub 2016 Nov 4.

PMID:
27775891
4.

The role of Fe(III) on phosphate released during the photo-decomposition of organic phosphorus in deionized and natural waters.

Jiang Y, Kang N, Zhou Y, Liu G, Zhu D.

Chemosphere. 2016 Dec;164:208-214. doi: 10.1016/j.chemosphere.2016.08.096. Epub 2016 Aug 31.

PMID:
27591372
5.

A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants.

Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP.

Environ Sci Technol. 2005 Sep 15;39(18):6896-916.

PMID:
16201610
6.

The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds.

Krzyśko-Lupicka T, Strof W, Kubś K, Skorupa M, Wieczorek P, Lejczak B, Kafarski P.

Appl Microbiol Biotechnol. 1997 Oct;48(4):549-52.

PMID:
9390463
7.

Degradation of phosphonates by streptomycete isolates.

Obojska A, Lejczak B, Kubrak M.

Appl Microbiol Biotechnol. 1999 Jun;51(6):872-6.

PMID:
10422232
8.

The enzymatic conversion of phosphonates to phosphate by bacteria.

Kamat SS, Raushel FM.

Curr Opin Chem Biol. 2013 Aug;17(4):589-96. doi: 10.1016/j.cbpa.2013.06.006. Epub 2013 Jul 2. Review.

PMID:
23830682
9.

Studies on degradation of glyphosate by several oxidative chemical processes: ozonation, photolysis and heterogeneous photocatalysis.

Assalin MR, De Moraes SG, Queiroz SC, Ferracini VL, Duran N.

J Environ Sci Health B. 2010 Jan;45(1):89-94. doi: 10.1080/03601230903404598.

PMID:
20390936
10.

Building materials as intrinsic sources of sulphate: a hidden face of salt weathering of historical monuments investigated through multi-isotope tracing (B, O, S).

Kloppmann W, Bromblet P, Vallet JM, Vergès-Belmin V, Rolland O, Guerrot C, Gosselin C.

Sci Total Environ. 2011 Apr 1;409(9):1658-69. doi: 10.1016/j.scitotenv.2011.01.008. Epub 2011 Feb 16.

PMID:
21329964
11.

Intermediates in the transformation of phosphonates to phosphate by bacteria.

Kamat SS, Williams HJ, Raushel FM.

Nature. 2011 Nov 16;480(7378):570-3. doi: 10.1038/nature10622.

12.

Photodegradation of glyphosate in the ferrioxalate system.

Chen Y, Wu F, Lin Y, Deng N, Bazhin N, Glebov E.

J Hazard Mater. 2007 Sep 5;148(1-2):360-5. Epub 2007 Feb 23.

PMID:
17374441
13.

Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.

Hove-Jensen B, Zechel DL, Jochimsen B.

Microbiol Mol Biol Rev. 2014 Mar;78(1):176-97. doi: 10.1128/MMBR.00040-13. Review.

14.

Compound specific stable isotope analysis (CSIA) to characterize transformation mechanisms of α-hexachlorocyclohexane.

Zhang N, Bashir S, Qin J, Schindelka J, Fischer A, Nijenhuis I, Herrmann H, Wick LY, Richnow HH.

J Hazard Mater. 2014 Sep 15;280:750-7. doi: 10.1016/j.jhazmat.2014.08.046. Epub 2014 Sep 2.

PMID:
25238192
15.

Oxygen isotope effects as structural and mechanistic probes in inorganic oxidation chemistry.

Ashley DC, Brinkley DW, Roth JP.

Inorg Chem. 2010 Apr 19;49(8):3661-75. doi: 10.1021/ic901778g. Review.

PMID:
20380467
16.

Photo-oxidation of water by molecular oxygen: isotope exchange and isotope effects.

Buchachenko AL, Dubinina EO.

J Phys Chem A. 2011 Apr 21;115(15):3196-200. doi: 10.1021/jp111613s. Epub 2011 Mar 30.

PMID:
21449564
17.

Pathway of diethyl phthalate photolysis in sea-water determined by gas chromatography-mass spectrometry and compound-specific isotope analysis.

Peng X, Feng L, Li X.

Chemosphere. 2013 Jan;90(2):220-6. doi: 10.1016/j.chemosphere.2012.06.045. Epub 2012 Aug 9.

PMID:
22883110
18.

Photocatalytic mineralization of glyphosate in a small-scale plug flow simulation reactor by UV/TiO2.

Chen JQ, Hu ZJ, Wang NX.

J Environ Sci Health B. 2012;47(6):579-88. doi: 10.1080/03601234.2012.665751.

PMID:
22494382
19.

Study on the photocatalytic degradation of glyphosate by TiO(2) photocatalyst.

Chen S, Liu Y.

Chemosphere. 2007 Mar;67(5):1010-7. Epub 2006 Dec 6.

PMID:
17156814
20.

The reversibility of dissimilatory sulphate reduction and the cell-internal multi-step reduction of sulphite to sulphide: insights from the oxygen isotope composition of sulphate.

Brunner B, Einsiedl F, Arnold GL, Müller I, Templer S, Bernasconi SM.

Isotopes Environ Health Stud. 2012;48(1):33-54. doi: 10.1080/10256016.2011.608128. Epub 2011 Nov 30.

PMID:
22128782

Supplemental Content

Support Center