Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 133

1.

Bayesian area-age-period-cohort model with carcinogenesis age effects in estimating cancer mortality.

Xu Z, Hertzberg VS.

Cancer Epidemiol. 2013 Oct;37(5):593-600. doi: 10.1016/j.canep.2013.07.002. Epub 2013 Jul 26.

PMID:
23891684
2.

Pleural and peritoneal mesotheliomas in SEER: age effects and temporal trends, 1973-2005.

Moolgavkar SH, Meza R, Turim J.

Cancer Causes Control. 2009 Aug;20(6):935-44. doi: 10.1007/s10552-009-9328-9. Epub 2009 Mar 18.

PMID:
19294523
3.

Age, period and cohort effects in Bayesian smoothing of spatial cancer survival with geoadditive models.

Sauleau EA, Hennerfeind A, Buemi A, Held L.

Stat Med. 2007 Jan 15;26(1):212-29.

PMID:
16526007
4.

A Bayesian semi-parametric model for colorectal cancer incidences.

Zhang S, Sun D, He CZ, Schootman M.

Stat Med. 2006 Jan 30;25(2):285-309.

PMID:
16381075
5.

[Meta-analysis of the Italian studies on short-term effects of air pollution].

Biggeri A, Bellini P, Terracini B; Italian MISA Group.

Epidemiol Prev. 2001 Mar-Apr;25(2 Suppl):1-71. Italian.

PMID:
11515188
6.

Bayesian approach to cancer-trend analysis using age-stratified Poisson regression models.

Ghosh P, Ghosh K, Tiwari RC.

Stat Med. 2011 Jan 30;30(2):127-39. doi: 10.1002/sim.4077. Epub 2010 Sep 14.

PMID:
20839366
7.

Estimating cancer incidence using a Bayesian back-calculation approach.

Ventura L, Mezzetti M.

Stat Med. 2014 Nov 10;33(25):4453-68. doi: 10.1002/sim.6240. Epub 2014 Jun 23.

PMID:
24957915
8.

A hierarchical Bayesian approach to age-specific back-calculation of cancer incidence rates.

Mezzetti M, Robertson C.

Stat Med. 1999 Apr 30;18(8):919-33.

PMID:
10363331
9.

Fitting the Armitage-Doll model to radiation-exposed cohorts and implications for population cancer risks.

Little MP, Hawkins MM, Charles MW, Hildreth NG.

Radiat Res. 1992 Nov;132(2):207-21. Erratum in: Radiat Res. 1994 Jan;137(1):124-8.

PMID:
1438703
10.

A Bayesian approach to study the space time variation of leprosy in an endemic area of Tamil Nadu, South India.

Joshua V, Gupte MD, Bhagavandas M.

Int J Health Geogr. 2008 Jul 21;7:40. doi: 10.1186/1476-072X-7-40.

11.

Multivariate parametric spatiotemporal models for county level breast cancer survival data.

Jin X, Carlin BP.

Lifetime Data Anal. 2005 Mar;11(1):5-27. Review.

PMID:
15747587
12.

Analysis of cancer rates using excess risk age-period-cohort models.

Lee WC, Lin RS.

Int J Epidemiol. 1995 Aug;24(4):671-7.

PMID:
8550262
13.

Autoregressive age-period-cohort models.

Lee WC, Lin RS.

Stat Med. 1996 Feb 15;15(3):273-81.

PMID:
8643885
14.

A Bayesian generalized age-period-cohort power model for cancer projections.

Jürgens V, Ess S, Cerny T, Vounatsou P.

Stat Med. 2014 Nov 20;33(26):4627-36. doi: 10.1002/sim.6248. Epub 2014 Jul 3.

PMID:
24996118
15.

Projecting cancer incidence and mortality using Bayesian age-period-cohort models.

Bashir SA, Estève J.

J Epidemiol Biostat. 2001;6(3):287-96.

PMID:
11437093
16.

Chapter 14: Comparing the adequacy of carcinogenesis models in estimating U.S. population rates for lung cancer mortality.

Holford TR, Levy DT.

Risk Anal. 2012 Jul;32 Suppl 1:S179-89. doi: 10.1111/j.1539-6924.2011.01734.x.

17.

Estimating age, period and cohort effects using the multistage model for cancer.

Holford TR, Zhang Z, McKay LA.

Stat Med. 1994 Jan 15;13(1):23-41.

PMID:
9061838
18.

Multistage modelling of lung cancer mortality in asbestos textile workers.

Pearce N.

Int J Epidemiol. 1988 Dec;17(4):747-52.

PMID:
3225081
19.

EMortality from cancer of the lung in Serbia.

Ilic M, Vlajinac H, Marinkovic J, Blazic Z.

J BUON. 2013 Jul-Sep;18(3):723-7.

PMID:
24065490
20.

Supplemental Content

Support Center